May  2013, 18(3): 601-641. doi: 10.3934/dcdsb.2013.18.601

Mathematics of traveling waves in chemotaxis --Review paper--

1. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  November 2012 Revised  November 2012 Published  December 2012

This article surveys the mathematical aspects of traveling waves of a class of chemotaxis models with logarithmic sensitivity, which describe a variety of biological or medical phenomena including bacterial chemotactic motion, initiation of angiogenesis and reinforced random walks. The survey is focused on the existence, wave speed, asymptotic decay rates, stability and chemical diffusion limits of traveling wave solutions. The main approaches are reviewed and related analytical results are given with sketchy proofs. We also develop some new results with detailed proofs to fill the gap existing in the literature. The numerical simulations of steadily propagating waves will be presented along the study. Open problems are proposed for interested readers to pursue.
Citation: Zhi-An Wang. Mathematics of traveling waves in chemotaxis --Review paper--. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 601-641. doi: 10.3934/dcdsb.2013.18.601
References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.

[3]

S. B. Ai, W. Z. Huang and Z. A. Wang, Traveling wave solutions to a chemotaxis system with logistic growth, preprint, 2012.

[4]

W. Alt and D. A. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722. doi: 10.1007/BF00275511.

[5]

S. Balasuriya and G. A. Gottwald, Wavespeed in reaction diffusion systems, with applications to chemotaxis and population pressure, J. Math. Biol., 61 (2010), 377-399. doi: 10.1007/s00285-009-0305-4.

[6]

D. Balding and D. L. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53-73.

[7]

R. Bellman, "Stability Theory of Differential Equations," McGraw-Hill Book Company, New York-Toronto-London, 1953.

[8]

R. D. Benguria, M. C. Depassier and V. Mendez, Minimum speed of fronts of reaction-convenction-diffusion equations, Phys. Rev. E (3), 69 (2004), 031106, 7 pp. doi: 10.1103/PhysRevE.69.031106.

[9]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev, Families of traveling impulses and fronts in some models with cross-diffusion, Nonlinear Analysis: Real World Applications, 9 (2008), 1866-1881. doi: 10.1016/j.nonrwa.2007.06.001.

[10]

M. P. Brenner, L. S. Levitor and E. O. Budrene, Physical mechanisms for chemotactic pattern formation by bacterial, Biophys. J., 74 (1988), 1677-1693.

[11]

E. Budrene and H. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.

[12]

E. Budrene and H. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.

[13]

S. Childress, Chemotactic collapse in two dimensions, in "Modelling of Patterns in Space and Time" (Heidelberg, 1983), Lect. Notes in Biomath., 55, Springer, Berlin, (1984), 61-66. doi: 10.1007/978-3-642-45589-66.

[14]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations," D. C. Heath and Co., Boston, 1965.

[15]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. doi: 10.1016/S1631-073X(02)00008-0.

[16]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan j. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.

[17]

F. W. Dahlquist, P. Lovely and D. E. Jr Koshland, Qualitative analysis of bacterial migration in chemotaxis, Nature, New Biol., 236 (1972), 120-123.

[18]

Y. Ebihara, Y. Furusho and T. Nagai, Singular solution of traveling waves in a chemotactic model, Bull. Kyushu Inst. Tech. Math. Natur. Sci., 39 (1992), 29-38,.

[19]

N. Fenichel, Geometric singular perturbation theory of ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[20]

R. A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.

[21]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[22]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8 (2006), 223-245. doi: 10.4171/IFB/141.

[23]

R. E. Goldstein, Traveling-wave chemotaxis, Phys. Rev. Lett., 77 (1996), 775-778.

[24]

J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal., 95 (1986), 325-344. doi: 10.1007/BF00276840.

[25]

S. Gueron and N. Liron, A model of herd grazing as a traveling wave: Chemotaxis and stability, J. Math. Biol., 27 (1989), 595-608. doi: 10.1007/BF00288436.

[26]

J. Guo, J. X. Xiao, H. J. Zhao and C. J. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641. doi: 10.1016/S0252-9602(09)60059-X.

[27]

M. Holz and S. H. Chen, Spatio-temporal structure of migrating chemotactic band of escherichia coli, Biophys. J., 26 (1979), 243-262.

[28]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.

[29]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.

[30]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25. doi: 10.1007/s00332-003-0548-y.

[31]

C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems" (ed. J. Russell) (Montecatini Terme, 1994), Lecture Notes in Math., 1609, Springer, Berlin, 1995. doi: 10.1007/BFb0095239.

[32]

E. F. Keller and G. M. Odell, Necessary and sufficient conditions for chemotactic bands, Math. Biosci., 27 (1975), 309-317.

[33]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.

[34]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.

[35]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 26 (1971), 235-248.

[36]

C. R. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death, Bull. Math. Biol., 42 (1980), 397-429. doi: 10.1016/S0092-8240(80)80057-7.

[37]

I. T. Kiguradse, On the non-negative non-increasing solutions of non-linear second order differential equations, Ann. Mat. Pura ed Appl. (4), 81 (1969), 169-192.

[38]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Byul. Moskovskogo Gos. Univ., 1 (1937), 1-25.

[39]

M. Kot, "Elementals of Mathematical Biology," Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511608520.

[40]

K. A. Landman, M. J. Simpson, J. L Slater and D. F. Newgreen, Diffusive and chemotactic celluar migration: Smooth and disconcinuous traveling wave solutions, SIAM J. Appl. Math., 65 (2005), 1420-1442. doi: 10.1137/040604066.

[41]

I. R. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria, Biophy. J., 22 (1978), 1-13.

[42]

D. Lauffenburger, C. R. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth, Bull. Math. Biol., 46 (1984), 19-40.

[43]

K. J. Lee, E. C. Cox and R. E. Goldstein, Competing patterns of signaling activity in dictyostelium discoideum, Phys. Rev. Lett., 76 (1996), 1174-1177.

[44]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730. doi: 10.1137/S0036139995291106.

[45]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650. doi: 10.1142/S0218202511005519.

[46]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM. J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[47]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (): 1522.  doi: 10.1137/09075161X.

[48]

T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. doi: 10.1142/S0218202510004830.

[49]

T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[50]

T. Li and Z.-A. Wang, Steadily propogating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.

[51]

Y. Li, The existence of traveling waves in a biological model for chemotaxis, Acta Mathematicae Applicatae Sinica (in Chinese), 27 (2004), 123-131.

[52]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[53]

T.-P. Liu and Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock profile, Comm. Math. Phy., 290 (2009), 23-82. doi: 10.1007/s00220-009-0820-6.

[54]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[55]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25. doi: 10.1007/BF03167036.

[56]

P. M. McCabe, J. A. Leach and D. J. Needham, A note on the non-existence of permanent form traveling wave solutions in a class of singular reaction-diffusion problems, Dynamical Systems, 17 (2002), 131-135. doi: 10.1080/14689360110116498.

[57]

M. Meyries, Local well posedness and instability of travelling waves in a chemotaxis model, Adv. Differential Equations, 16 (2011), 31-60.

[58]

J. D. Murray, "Mathematical Biology. I. An Introduction," Third edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.

[59]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms, Interfaces Free Bound., 10 (2008), 517-538. doi: 10.4171/IFB/200.

[60]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. doi: 10.1007/BF00160334.

[61]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 1 (1998), 9-18.

[62]

R. Nossal, Boundary movement of chemotactic bacterial populations, Math. Biosci., 13 (1972), 397-406.

[63]

A. Novick-Cohen and L. A. Segel, A gradually slowing traveling band of chemotactic bacteria, J. Math. Biol., 19 (1984), 125-132.

[64]

G. M. Odell and E. F. Keller, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol., 56 (1976), 243-247.

[65]

H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976.

[66]

C. H. Ou and W. Yuan, Traveling wavefronts in a volume-filling chemotaxis model, SIAM Appl. Dyn. Sys., 8 (2009), 390-416. doi: 10.1137/08072797X.

[67]

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis, J. Math. Biol., 33 (1995), 388-414. doi: 10.1007/BF00176379.

[68]

G. Rosen, On the propogation theory for bands of chemotactic bacteria, Math. Biosci., 20 (1974), 185-189.

[69]

G. Rosen, Analytical solution to the initial value problem for traveling bands of chemotactic bacteria, J. Theor. Biol., 49 (1975), 311-321.

[70]

G. Rosen, Existence and nature of band solutions to generic chemotactic transport equations, J. Theor. Biol., 59 (1976), 243-246.

[71]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674. doi: 10.1016/S0092-8240(78)80025-1.

[72]

G. Rosen, Theoretical significance of the condition $\delta=2\mu$ in bacterial chemotaxis, Bull. Math. Biol., 45 (1983), 151-153.

[73]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria, Math. Biosci., 24 (1975), 273-279.

[74]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Computational Biology, 6 (2010), e1000890, 12 pp. doi: 10.1371/journal.pcbi.1000890.

[75]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.

[76]

T. L. Scribner, L. A. Segel and E. H. Rogers, A numerical study of the formation and propogation of traveling bands of chemotactic bacteria, J. Theor. Biol., 46 (1974), 189-219.

[77]

L. A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J. Appl. Math., 32 (1977), 653-665.

[78]

J. A. Sherratt, E. H. Sage and J. D. Murray, Chemical control of eukaryotic cell movement: A new model, J. Theor. Biol., 162 (1993), 23-40.

[79]

Y. S. Tao, L. H. Wang and Z. A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst.-Series B, accepted, 2012.

[80]

M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations, Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.

[81]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (): 1694.  doi: 10.1137/060655122.

[82]

Z.-A. Wang, Wavefront of an angiogenesis model, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.

[83]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. doi: 10.1002/mma.898.

[84]

Z.-A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model,, Comm. Pure Appl. Anal., (). 

[85]

R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci., 98 (2001), 14907-14912.

[86]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190. doi: 10.1002/mma.1346.

[87]

Y. P. Wu, Stability of travelling waves for a cross-diffusion model, J. Math. Anal. Appl, 215 (1997), 388-414. doi: 10.1006/jmaa.1997.5636.

[88]

J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161-230. doi: 10.1137/S0036144599364296.

[89]

C. Xue, H. J. Hwang, K. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733. doi: 10.1007/s11538-010-9586-4.

[90]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027. doi: 10.1090/S0002-9939-06-08773-9.

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.

[2]

J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.

[3]

S. B. Ai, W. Z. Huang and Z. A. Wang, Traveling wave solutions to a chemotaxis system with logistic growth, preprint, 2012.

[4]

W. Alt and D. A. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722. doi: 10.1007/BF00275511.

[5]

S. Balasuriya and G. A. Gottwald, Wavespeed in reaction diffusion systems, with applications to chemotaxis and population pressure, J. Math. Biol., 61 (2010), 377-399. doi: 10.1007/s00285-009-0305-4.

[6]

D. Balding and D. L. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53-73.

[7]

R. Bellman, "Stability Theory of Differential Equations," McGraw-Hill Book Company, New York-Toronto-London, 1953.

[8]

R. D. Benguria, M. C. Depassier and V. Mendez, Minimum speed of fronts of reaction-convenction-diffusion equations, Phys. Rev. E (3), 69 (2004), 031106, 7 pp. doi: 10.1103/PhysRevE.69.031106.

[9]

F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev, Families of traveling impulses and fronts in some models with cross-diffusion, Nonlinear Analysis: Real World Applications, 9 (2008), 1866-1881. doi: 10.1016/j.nonrwa.2007.06.001.

[10]

M. P. Brenner, L. S. Levitor and E. O. Budrene, Physical mechanisms for chemotactic pattern formation by bacterial, Biophys. J., 74 (1988), 1677-1693.

[11]

E. Budrene and H. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.

[12]

E. Budrene and H. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.

[13]

S. Childress, Chemotactic collapse in two dimensions, in "Modelling of Patterns in Space and Time" (Heidelberg, 1983), Lect. Notes in Biomath., 55, Springer, Berlin, (1984), 61-66. doi: 10.1007/978-3-642-45589-66.

[14]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations," D. C. Heath and Co., Boston, 1965.

[15]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. doi: 10.1016/S1631-073X(02)00008-0.

[16]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan j. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.

[17]

F. W. Dahlquist, P. Lovely and D. E. Jr Koshland, Qualitative analysis of bacterial migration in chemotaxis, Nature, New Biol., 236 (1972), 120-123.

[18]

Y. Ebihara, Y. Furusho and T. Nagai, Singular solution of traveling waves in a chemotactic model, Bull. Kyushu Inst. Tech. Math. Natur. Sci., 39 (1992), 29-38,.

[19]

N. Fenichel, Geometric singular perturbation theory of ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[20]

R. A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7 (1937), 355-369.

[21]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[22]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8 (2006), 223-245. doi: 10.4171/IFB/141.

[23]

R. E. Goldstein, Traveling-wave chemotaxis, Phys. Rev. Lett., 77 (1996), 775-778.

[24]

J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal., 95 (1986), 325-344. doi: 10.1007/BF00276840.

[25]

S. Gueron and N. Liron, A model of herd grazing as a traveling wave: Chemotaxis and stability, J. Math. Biol., 27 (1989), 595-608. doi: 10.1007/BF00288436.

[26]

J. Guo, J. X. Xiao, H. J. Zhao and C. J. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641. doi: 10.1016/S0252-9602(09)60059-X.

[27]

M. Holz and S. H. Chen, Spatio-temporal structure of migrating chemotactic band of escherichia coli, Biophys. J., 26 (1979), 243-262.

[28]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.

[29]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.

[30]

D. Horstmann and A. Stevens, A constructive approach to traveling waves in chemotaxis, J. Nonlin. Sci., 14 (2004), 1-25. doi: 10.1007/s00332-003-0548-y.

[31]

C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems" (ed. J. Russell) (Montecatini Terme, 1994), Lecture Notes in Math., 1609, Springer, Berlin, 1995. doi: 10.1007/BFb0095239.

[32]

E. F. Keller and G. M. Odell, Necessary and sufficient conditions for chemotactic bands, Math. Biosci., 27 (1975), 309-317.

[33]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.

[34]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.

[35]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 26 (1971), 235-248.

[36]

C. R. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death, Bull. Math. Biol., 42 (1980), 397-429. doi: 10.1016/S0092-8240(80)80057-7.

[37]

I. T. Kiguradse, On the non-negative non-increasing solutions of non-linear second order differential equations, Ann. Mat. Pura ed Appl. (4), 81 (1969), 169-192.

[38]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Byul. Moskovskogo Gos. Univ., 1 (1937), 1-25.

[39]

M. Kot, "Elementals of Mathematical Biology," Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511608520.

[40]

K. A. Landman, M. J. Simpson, J. L Slater and D. F. Newgreen, Diffusive and chemotactic celluar migration: Smooth and disconcinuous traveling wave solutions, SIAM J. Appl. Math., 65 (2005), 1420-1442. doi: 10.1137/040604066.

[41]

I. R. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria, Biophy. J., 22 (1978), 1-13.

[42]

D. Lauffenburger, C. R. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth, Bull. Math. Biol., 46 (1984), 19-40.

[43]

K. J. Lee, E. C. Cox and R. E. Goldstein, Competing patterns of signaling activity in dictyostelium discoideum, Phys. Rev. Lett., 76 (1996), 1174-1177.

[44]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730. doi: 10.1137/S0036139995291106.

[45]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650. doi: 10.1142/S0218202511005519.

[46]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM. J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[47]

T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (): 1522.  doi: 10.1137/09075161X.

[48]

T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. doi: 10.1142/S0218202510004830.

[49]

T. Li and Z.-A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[50]

T. Li and Z.-A. Wang, Steadily propogating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.

[51]

Y. Li, The existence of traveling waves in a biological model for chemotaxis, Acta Mathematicae Applicatae Sinica (in Chinese), 27 (2004), 123-131.

[52]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[53]

T.-P. Liu and Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock profile, Comm. Math. Phy., 290 (2009), 23-82. doi: 10.1007/s00220-009-0820-6.

[54]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[55]

A. Matsumura and K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25. doi: 10.1007/BF03167036.

[56]

P. M. McCabe, J. A. Leach and D. J. Needham, A note on the non-existence of permanent form traveling wave solutions in a class of singular reaction-diffusion problems, Dynamical Systems, 17 (2002), 131-135. doi: 10.1080/14689360110116498.

[57]

M. Meyries, Local well posedness and instability of travelling waves in a chemotaxis model, Adv. Differential Equations, 16 (2011), 31-60.

[58]

J. D. Murray, "Mathematical Biology. I. An Introduction," Third edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.

[59]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms, Interfaces Free Bound., 10 (2008), 517-538. doi: 10.4171/IFB/200.

[60]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. doi: 10.1007/BF00160334.

[61]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 1 (1998), 9-18.

[62]

R. Nossal, Boundary movement of chemotactic bacterial populations, Math. Biosci., 13 (1972), 397-406.

[63]

A. Novick-Cohen and L. A. Segel, A gradually slowing traveling band of chemotactic bacteria, J. Math. Biol., 19 (1984), 125-132.

[64]

G. M. Odell and E. F. Keller, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol., 56 (1976), 243-247.

[65]

H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976.

[66]

C. H. Ou and W. Yuan, Traveling wavefronts in a volume-filling chemotaxis model, SIAM Appl. Dyn. Sys., 8 (2009), 390-416. doi: 10.1137/08072797X.

[67]

M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis, J. Math. Biol., 33 (1995), 388-414. doi: 10.1007/BF00176379.

[68]

G. Rosen, On the propogation theory for bands of chemotactic bacteria, Math. Biosci., 20 (1974), 185-189.

[69]

G. Rosen, Analytical solution to the initial value problem for traveling bands of chemotactic bacteria, J. Theor. Biol., 49 (1975), 311-321.

[70]

G. Rosen, Existence and nature of band solutions to generic chemotactic transport equations, J. Theor. Biol., 59 (1976), 243-246.

[71]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674. doi: 10.1016/S0092-8240(78)80025-1.

[72]

G. Rosen, Theoretical significance of the condition $\delta=2\mu$ in bacterial chemotaxis, Bull. Math. Biol., 45 (1983), 151-153.

[73]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria, Math. Biosci., 24 (1975), 273-279.

[74]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Computational Biology, 6 (2010), e1000890, 12 pp. doi: 10.1371/journal.pcbi.1000890.

[75]

H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.

[76]

T. L. Scribner, L. A. Segel and E. H. Rogers, A numerical study of the formation and propogation of traveling bands of chemotactic bacteria, J. Theor. Biol., 46 (1974), 189-219.

[77]

L. A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J. Appl. Math., 32 (1977), 653-665.

[78]

J. A. Sherratt, E. H. Sage and J. D. Murray, Chemical control of eukaryotic cell movement: A new model, J. Theor. Biol., 162 (1993), 23-40.

[79]

Y. S. Tao, L. H. Wang and Z. A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst.-Series B, accepted, 2012.

[80]

M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations, Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.

[81]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (): 1694.  doi: 10.1137/060655122.

[82]

Z.-A. Wang, Wavefront of an angiogenesis model, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.

[83]

Z.-A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. doi: 10.1002/mma.898.

[84]

Z.-A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model,, Comm. Pure Appl. Anal., (). 

[85]

R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci., 98 (2001), 14907-14912.

[86]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190. doi: 10.1002/mma.1346.

[87]

Y. P. Wu, Stability of travelling waves for a cross-diffusion model, J. Math. Anal. Appl, 215 (1997), 388-414. doi: 10.1006/jmaa.1997.5636.

[88]

J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161-230. doi: 10.1137/S0036144599364296.

[89]

C. Xue, H. J. Hwang, K. J. Painter and R. Erban, Travelling waves in hyperbolic chemotaxis equations, Bull. Math. Biol., 73 (2011), 1695-1733. doi: 10.1007/s11538-010-9586-4.

[90]

M. Zhang and C. J. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027. doi: 10.1090/S0002-9939-06-08773-9.

[1]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[2]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[3]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[4]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[5]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[6]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[7]

Hongyun Peng, Lizhi Ruan, Changjiang Zhu. Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis. Kinetic and Related Models, 2012, 5 (3) : 563-581. doi: 10.3934/krm.2012.5.563

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[10]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[11]

Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123

[12]

Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469-476. doi: 10.3934/proc.2003.2003.469

[13]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6253-6265. doi: 10.3934/dcdsb.2021017

[14]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[15]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[16]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[17]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[18]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[19]

Zhijie Cao, Lijun Zhang. Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2703-2717. doi: 10.3934/dcdss.2020218

[20]

Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (287)
  • HTML views (0)
  • Cited by (46)

Other articles
by authors

[Back to Top]