\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian

Abstract Related Papers Cited by
  • We establish the exponential time decay rate of smooth solutions of small amplitude to the Vlasov-Poisson-Fokker-Planck equations to the Maxwellian both in the whole space and in the periodic box via the uniform-in-time energy estimates and also the macroscopic equations.
    Mathematics Subject Classification: Primary: 35Q84; Secondary: 82D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9), 81 (2002), 1135-1159.doi: 10.1016/S0021-7824(02)01264-3.

    [2]

    F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258.doi: 10.1006/jfan.1993.1011.

    [3]

    F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238.doi: 10.1006/jdeq.1995.1146.

    [4]

    F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.

    [5]

    A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014.doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

    [6]

    J. Carrillo, R. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258.doi: 10.3934/krm.2011.4.227.

    [7]

    J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.doi: 10.1002/mma.1670181006.

    [8]

    J. A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132.doi: 10.1006/jfan.1996.0123.

    [9]

    L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

    [10]

    L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9.

    [11]

    R. Duan and R. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.doi: 10.1007/s00205-010-0318-6.

    [12]

    R. Esposito, Y. Guo and R. Marra, Stability of the front under a Vlasov-Fokker-Planck dynamics, Arch. Ration. Mech. Anal., 195 (2010), 75-116.doi: 10.1007/s00205-008-0184-7.

    [13]

    T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202.doi: 10.1137/090776755.

    [14]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.doi: 10.1002/cpa.10040.

    [15]

    L. Hormander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.

    [16]

    F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218.doi: 10.1007/s00205-003-0276-3.

    [17]

    T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179.doi: 10.1007/s00220-003-1030-2.

    [18]

    C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672.doi: 10.1007/s00220-005-1455-x.

    [19]

    K. Ono and W. A. Strauss, Regular solutions of the Vlasov-Poisson-Fokker-Planck system, Discrete Contin. Dynam. Systems, 6 (2000), 751-772.doi: 10.3934/dcds.2000.6.751.

    [20]

    G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.doi: 10.1016/0022-0396(92)90135-A.

    [21]

    E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

    [22]

    R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.doi: 10.1007/s00205-007-0067-3.

    [23]

    C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5.

    [24]

    H. D. Victory, Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.doi: 10.1016/0022-247X(91)90324-S.

    [25]

    H. D. Victory, Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156.doi: 10.1512/iumj.1990.39.39009.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(388) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return