-
Previous Article
Multiple steady states in a mathematical model for interactions between T cells and macrophages
- DCDS-B Home
- This Issue
-
Next Article
Multidimensional stability of planar traveling waves for an integrodifference model
Adaptation and migration of a population between patches
1. | CMAP, Ecole Polytechnique, CNRS, INRIA, Route de Saclay, 91128 Palaiseau Cedex, France |
References:
[1] |
V. Bansaye and A. Lambert, Past, growth and persistence of source-sink metapopulations, preprint, arXiv:1111.2535. |
[2] |
G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16 (2009), 321-340. |
[3] |
J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.
doi: 10.1016/j.anihpc.2003.06.001. |
[4] |
A. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1091-1117.
doi: 10.1142/S0218202505000637. |
[5] |
J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161.
doi: 10.1016/j.mbs.2006.09.012. |
[6] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.
doi: 10.1080/15326340802437710. |
[7] |
N. Champagnat, R. Ferrière and S. Méléard, "Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations," Progress in Probability, 59, Birkhäuser, 2008.
doi: 10.1007/978-3-7643-8458-6_6. |
[8] |
N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, Journal of Differential Equations, 261 (2011), 179-195.
doi: 10.1016/j.jde.2011.03.007. |
[9] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On mutation-selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[11] |
O. Diekmann, A beginner's guide to adaptive dynamics, in "Mathematical Modelling of Population Dynamics," Banach Center Publ., 63, Polish Acad. Sci., Warsaw, (2004), 47-86. |
[12] |
O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Th. Pop. Biol., 67 (2005), 257-271. |
[13] |
I. Eshel, Evolutionary and continuous stability, Journal of Theoretical Biology, 103 (1983), 99-111.
doi: 10.1016/0022-5193(83)90201-1. |
[14] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. R. Soc. Edinb. Sec. A, 111 (1989), 359-375.
doi: 10.1017/S0308210500018631. |
[15] |
S. A. H. Geritz, E. Kisdi, G. Mészena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol, 12 (1998), 35-57. |
[16] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027. |
[17] |
P.-E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., to appear.
doi: 10.1007/s00285-010-0370-8. |
[18] |
S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle, The American Naturalist, 104 (1970), 413-423. |
[19] |
S. Lion and M. van Baalen, Self-structuring in spatial evolutionary ecology, Ecology Letters, 11 (2008), 277-295. |
[20] |
A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098.
doi: 10.1080/03605302.2010.538784. |
[21] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18. |
[22] |
G. Meszéna, M. Gyllenberg, F. J. Jacobs and J. A. J. Metz, Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett., 95 (2005), 078105.1-078105.4. |
[23] |
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define "fitness" for general ecological scenarios?, TREE, 7 (1992), 198-202. |
[24] |
S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins, Nonlinear Differential Equations and Applications NoDEA, to appear. |
[25] |
B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic {PDEs}, Indiana Univ. Math. J., 57 (2008), 3275-3301.
doi: 10.1512/iumj.2008.57.3398. |
[26] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a homogenization approach, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 2055-2071.
doi: 10.1016/j.anihpc.2008.10.003. |
[27] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: A large deviation approach, Arch. Ration. Mech. Anal., 193 (2009), 153-169.
doi: 10.1007/s00205-008-0198-1. |
[28] |
G. Raoul, Long time evolution of populations under selection and vanishing mutations, Acta Applicandae Mathematica, 114 (2011), 1-14.
doi: 10.1007/s10440-011-9603-0. |
[29] |
T. W. Schoener, Resource partitioning in ecological communities, Science, 13 (1974), 27-39. |
[30] |
A. Szilágyi and G. Meszéna, Two-patch model of spatial niche segregation, Evolutionary Ecology, 23 (2009), 187-205. |
show all references
References:
[1] |
V. Bansaye and A. Lambert, Past, growth and persistence of source-sink metapopulations, preprint, arXiv:1111.2535. |
[2] |
G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16 (2009), 321-340. |
[3] |
J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.
doi: 10.1016/j.anihpc.2003.06.001. |
[4] |
A. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1091-1117.
doi: 10.1142/S0218202505000637. |
[5] |
J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161.
doi: 10.1016/j.mbs.2006.09.012. |
[6] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.
doi: 10.1080/15326340802437710. |
[7] |
N. Champagnat, R. Ferrière and S. Méléard, "Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations," Progress in Probability, 59, Birkhäuser, 2008.
doi: 10.1007/978-3-7643-8458-6_6. |
[8] |
N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, Journal of Differential Equations, 261 (2011), 179-195.
doi: 10.1016/j.jde.2011.03.007. |
[9] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On mutation-selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[11] |
O. Diekmann, A beginner's guide to adaptive dynamics, in "Mathematical Modelling of Population Dynamics," Banach Center Publ., 63, Polish Acad. Sci., Warsaw, (2004), 47-86. |
[12] |
O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Th. Pop. Biol., 67 (2005), 257-271. |
[13] |
I. Eshel, Evolutionary and continuous stability, Journal of Theoretical Biology, 103 (1983), 99-111.
doi: 10.1016/0022-5193(83)90201-1. |
[14] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. R. Soc. Edinb. Sec. A, 111 (1989), 359-375.
doi: 10.1017/S0308210500018631. |
[15] |
S. A. H. Geritz, E. Kisdi, G. Mészena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol, 12 (1998), 35-57. |
[16] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027. |
[17] |
P.-E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., to appear.
doi: 10.1007/s00285-010-0370-8. |
[18] |
S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle, The American Naturalist, 104 (1970), 413-423. |
[19] |
S. Lion and M. van Baalen, Self-structuring in spatial evolutionary ecology, Ecology Letters, 11 (2008), 277-295. |
[20] |
A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098.
doi: 10.1080/03605302.2010.538784. |
[21] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18. |
[22] |
G. Meszéna, M. Gyllenberg, F. J. Jacobs and J. A. J. Metz, Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett., 95 (2005), 078105.1-078105.4. |
[23] |
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define "fitness" for general ecological scenarios?, TREE, 7 (1992), 198-202. |
[24] |
S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins, Nonlinear Differential Equations and Applications NoDEA, to appear. |
[25] |
B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic {PDEs}, Indiana Univ. Math. J., 57 (2008), 3275-3301.
doi: 10.1512/iumj.2008.57.3398. |
[26] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a homogenization approach, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 2055-2071.
doi: 10.1016/j.anihpc.2008.10.003. |
[27] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: A large deviation approach, Arch. Ration. Mech. Anal., 193 (2009), 153-169.
doi: 10.1007/s00205-008-0198-1. |
[28] |
G. Raoul, Long time evolution of populations under selection and vanishing mutations, Acta Applicandae Mathematica, 114 (2011), 1-14.
doi: 10.1007/s10440-011-9603-0. |
[29] |
T. W. Schoener, Resource partitioning in ecological communities, Science, 13 (1974), 27-39. |
[30] |
A. Szilágyi and G. Meszéna, Two-patch model of spatial niche segregation, Evolutionary Ecology, 23 (2009), 187-205. |
[1] |
Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 |
[2] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[3] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[4] |
Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 |
[5] |
Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 |
[6] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[7] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[8] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[9] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[10] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[11] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[12] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[13] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[14] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[15] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
[16] |
Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223 |
[17] |
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 |
[18] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[19] |
Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917 |
[20] |
Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]