\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The long time behavior of a spectral collocation method for delay differential equations of pantograph type

Abstract Related Papers Cited by
  • In this paper, we propose an efficient numerical method for delay differential equations with vanishing proportional delay qt (0 < q < 1). The algorithm is a mixture of the Legendre-Gauss collocation method and domain decomposition. It has global convergence and spectral accuracy provided that the data in the given pantograph delay differential equation are sufficiently smooth. Numerical results demonstrate the spectral accuracy of this approach and coincide well with theoretical analysis.
    Mathematics Subject Classification: 34K28, 65L05, 65Q10, 41A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Ali, H. Brunner and T. Tang, A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27 (2009), 254-265.

    [2]

    I. Ali, H. Brunner and T. Tang, Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. Math. China, 4 (2009), 49-61.doi: 10.1007/s11464-009-0010-z.

    [3]

    A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA J. Numer. Anal., 22 (2002), 529-536.doi: 10.1093/imanum/22.4.529.

    [4]

    A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations," Oxford University Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198506546.001.0001.

    [5]

    A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays, BIT, 46 (2006), 229-247.doi: 10.1007/s10543-006-0055-2.

    [6]

    H. Brunner, "Collocation Methods for Volterra Integral and Related Functional Differential Equations," Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511543234.

    [7]

    H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22.doi: 10.1007/s11464-009-0001-0.

    [8]

    H. Brunner, Q. M. Huang and H. H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type, SIAM J. Numer. Anal., 48 (2010), 1944-1967.doi: 10.1137/090771922.

    [9]

    H. Brunner and Q. Y. Hu, Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J. Numer. Anal., 45 (2007), 986-1004.doi: 10.1137/060660357.

    [10]

    L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl., 8 (1971), 271-307.

    [11]

    C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, "Spectral Methods. Fundamentals in Single Domains," Springer-Verlag, Berlin, 2006.

    [12]

    B. Y. Guo and Z. Q. Wang, Legendre-Gauss collocation methods for ordinary differential equations, Adv. Comp. Math., 30 (2009), 249-280.doi: 10.1007/s10444-008-9067-6.

    [13]

    B. Y. Guo and J. P. Yan, Legendre-Gauss collocation methods for initial value problems of second ordinary differential equations, App. Numer. Math., 59 (2009), 1386-1408.doi: 10.1016/j.apnum.2008.08.007.

    [14]

    A. Iserles, On the generalized pantograph functional differential equation, Europ J. Appl. Math., 4 (1993), 1-38.doi: 10.1017/S0956792500000966.

    [15]

    A. Iserles, On nonlinear delay-differential equations, Trans. Amer. Math. Soc., 344 (1994), 441-477.doi: 10.2307/2154725.

    [16]

    T. Kato and J. B. Mcleod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.

    [17]

    T. Tang, X. Xu, and J. Cheng, On spectral methods for Volterra type integral equations and the convergence analysis, J. Comput. Math., 26 (2008), 825-837.

    [18]

    X. Tao, Z. Q. Xie, and X. J. Zhou, Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations, Numer. Math. Theor. Meth. Appl., 4 (2011), 216-236.

    [19]

    Z. Q. Wang and L. L. Wang, A Legendre-Gauss collocation method for nonlinear delay differential equations, Dis. Cont. Dyn. Sys. B., 13 (2010), 685-708.doi: 10.3934/dcdsb.2010.13.685.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return