Citation: |
[1] |
I. Ali, H. Brunner and T. Tang, A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27 (2009), 254-265. |
[2] |
I. Ali, H. Brunner and T. Tang, Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. Math. China, 4 (2009), 49-61.doi: 10.1007/s11464-009-0010-z. |
[3] |
A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA J. Numer. Anal., 22 (2002), 529-536.doi: 10.1093/imanum/22.4.529. |
[4] |
A. Bellen and M. Zennaro, "Numerical Methods for Delay Differential Equations," Oxford University Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[5] |
A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays, BIT, 46 (2006), 229-247.doi: 10.1007/s10543-006-0055-2. |
[6] |
H. Brunner, "Collocation Methods for Volterra Integral and Related Functional Differential Equations," Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511543234. |
[7] |
H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22.doi: 10.1007/s11464-009-0001-0. |
[8] |
H. Brunner, Q. M. Huang and H. H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type, SIAM J. Numer. Anal., 48 (2010), 1944-1967.doi: 10.1137/090771922. |
[9] |
H. Brunner and Q. Y. Hu, Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J. Numer. Anal., 45 (2007), 986-1004.doi: 10.1137/060660357. |
[10] |
L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl., 8 (1971), 271-307. |
[11] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, "Spectral Methods. Fundamentals in Single Domains," Springer-Verlag, Berlin, 2006. |
[12] |
B. Y. Guo and Z. Q. Wang, Legendre-Gauss collocation methods for ordinary differential equations, Adv. Comp. Math., 30 (2009), 249-280.doi: 10.1007/s10444-008-9067-6. |
[13] |
B. Y. Guo and J. P. Yan, Legendre-Gauss collocation methods for initial value problems of second ordinary differential equations, App. Numer. Math., 59 (2009), 1386-1408.doi: 10.1016/j.apnum.2008.08.007. |
[14] |
A. Iserles, On the generalized pantograph functional differential equation, Europ J. Appl. Math., 4 (1993), 1-38.doi: 10.1017/S0956792500000966. |
[15] |
A. Iserles, On nonlinear delay-differential equations, Trans. Amer. Math. Soc., 344 (1994), 441-477.doi: 10.2307/2154725. |
[16] |
T. Kato and J. B. Mcleod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937. |
[17] |
T. Tang, X. Xu, and J. Cheng, On spectral methods for Volterra type integral equations and the convergence analysis, J. Comput. Math., 26 (2008), 825-837. |
[18] |
X. Tao, Z. Q. Xie, and X. J. Zhou, Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations, Numer. Math. Theor. Meth. Appl., 4 (2011), 216-236. |
[19] |
Z. Q. Wang and L. L. Wang, A Legendre-Gauss collocation method for nonlinear delay differential equations, Dis. Cont. Dyn. Sys. B., 13 (2010), 685-708.doi: 10.3934/dcdsb.2010.13.685. |