Citation: |
[1] |
E. Agliari, A. Barra, F. Guerra and F. Moauro, A thermodynamical perspective of immune capabilities, J. Theor. Biol., 287 (2010), 48-63. |
[2] |
N. Bellomo and M. Delitala, From the mathematical kinetic, and stochastic game theory to modeling mutations, onset, progression and immune competition of cancer cells, Phys. Life Rev., 5 (2008), 183-206. |
[3] |
A. Bellouquid and M. Delitala, "Modelling Complex Multicellular Systems - A Kinetic Theory Approach,'' Birkhäuser, Boston, 2006. |
[4] |
C. Bianca and M. Delitala, On the modelling genetic mutations and immune system competition, Comput. Math. Appl., 61 (2011) 2362-2375.doi: 10.1016/j.camwa.2011.01.024. |
[5] |
S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol., 70 (2008), 2055-2076.doi: 10.1007/s11538-008-9344-z. |
[6] |
R. E. Callard and A. J. Yates, Immunology and mathematics: Crossing the divide, Immunology, 115 (2005), 21-33. |
[7] |
V. Calvez, A. Korobeinikov and P. K. Maini, Cluster formation for multi-strain infections with cross-immunity, J. Theor. Biol., 233 (2005), 75-83.doi: 10.1016/j.jtbi.2004.09.016. |
[8] |
C. Cattani, A. Ciancio and A. d'Onofrio, Metamodeling the learning-hiding competition between tumours and the immune system: A kinematic approach, Math. Comput. Model., 52 (2010), 62-69.doi: 10.1016/j.mcm.2010.01.012. |
[9] |
A. K. Chakraborty, M. L. Dustin and A. S. Shaw, In Silico models in molecular and cellular immunology: Successes, promises, and challenges, Nat. Immunol., 4 (2003), 933-936. |
[10] |
A. K. Chakraborty and A. Kosmrlj, Statistical mechanical concepts in immunology, Annu. Rev. Phys. Chem., 61 (2010), 283-303. |
[11] |
M. A. J. Chaplain and A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, Lect. Notes Math., 1872 (2006), 131-183, Springer-Verlag Berlin Heidelberg.doi: 10.1007/11561606_4. |
[12] |
D. Chowdhury, M. Sahimi and D. Stauffer, A discrete model for immune surveillance, tumor immunity and cancer, J. Theor. Biol., 152 (1991), 263-270. |
[13] |
L. G. de Pillis, D. G. Mallet and A. E. Radunskaya, Spatial tumor-immune modeling, Comput. Math. Methods Med., 7 (2006), 159-176.doi: 10.1080/10273660600968978. |
[14] |
M. Delitala and T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions, J. Theor. Biol., 297 (2012), 88-102.doi: 10.1016/j.jtbi.2011.11.022. |
[15] |
L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[16] |
G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber, Cancer immunoediting: From immunosurveillance to tumor escape, Nat. Immunol., 3 (2002), 991-998. |
[17] |
P. A. W. Edwards, Heterogeneous expression of cell-surface antigens in normal epithelia and their tumours, revealed by monoclonal antibodies, Br. J. Cancer, 51 (1985), 149-160. |
[18] |
S. Eikenberry, C. Thalhauser and Y. Kuang, Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma, PLoS Comput. Biol., 5 (2009), e1000362.doi: 10.1371/journal.pcbi.1000362. |
[19] |
A. H. L. Erickson, A. Wise, S. Fleming, M. Baird, Z. Lateef, A. Molinaro, M. Teboh-Ewungkem and L. de Pillis, A preliminary mathematical model of skin dendritic cell tracking and induction of t cell immunity, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 323-336.doi: 10.3934/dcdsb.2009.12.323. |
[20] |
D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011), 646-674. |
[21] |
M. Herrero, On the role of mathematics in biology, J. Math. Biol., 54 (2007), 887-889.doi: 10.1007/s00285-007-0095-5. |
[22] |
W. Hu, W. Zhong, F. Wang, L. Li and Y. Shao, In silico synergism and antagonism of an anti-tumour system intervened by coupling immunotherapy and chemotherapy: A mathematical modelling approach, Bull. Math. Biol., (2011).doi: 10.1007/s11538-011-9693-x. |
[23] |
M. Kaufman, J. Urbain and R. Thomas, Towards a logical analysis of the immune response, J. Theor. Biol., 114 (1985), 527-561.doi: 10.1016/S0022-5193(85)80042-4. |
[24] |
T. J. Kindt, R. A. Goldsby, B. A. Osborne and J. Kuby, "Kuby Immunology," W. H. Freeman and Company, 2005. |
[25] |
M. Kolev, Mathematical modeling of the competition between acquired immunity and cancer, Int. J. Appl. Math. Comput. Sci., 13 (2003), 289-296. |
[26] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. |
[27] |
J. Kzhyshkowska, A. Marciniak-Czochra and A. Gratchev, Perspectives of mathematical modelling for understanding of macrophage function, Immunobiology, 212 (2007), 813-825. |
[28] |
D. G. Mallet and L. G. de Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350.doi: 10.1016/j.jtbi.2005.08.002. |
[29] |
D. Mason, A very high level of crossreactivity is an essential feature of the T-cell receptor, Immunology today, 19 (1998), 395-404. |
[30] |
A. Matzavinos, M. A.J . Chaplain and V. A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumor, Math. Med. Biol., 21 (2004), 1-34. |
[31] |
L. M. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924-935. |
[32] |
R. K. Oldham and R. O. Dillman (Eds.), "Principles of Cancer Biotherapy,'' $3^{rd}$ edition, Kluwer Academic Publishers, The Netherlands, 1997. |
[33] |
F. Pappalardo, S. Musumeci and S. Motta, Modeling immune system control of atherogenesis, Bioinformatics, 24 (2008), 1715-1721. |
[34] |
A. Perelson and G. Weisbuch, Immunology for physicists, Rev. Mod. Phys., 69 (1997), 1219-1268. |
[35] |
B. Perthame, "Transport Equations in Biology,'' Birkhäuser, Basel, 2007. |
[36] |
A. Plesa , G. Ciuperca, S. Genieys, V. Louvet, L. Pujo-Menjouet, C. Dumontet and V. Volpert, Diagnostics of the AML with immunophenotypical data, Math. Mod. Nat. Phen., 2 (2006), 104-123.doi: 10.1051/mmnp:2008006. |
[37] |
W. R. Welch, J. M. Niloff, D. Anderson, A. Battailea, S. Emery, R. C. Knapp and R. C. Bast, Antigenic heterogeneity in human ovarian cancer, Gynecol. Oncol., 38 (1990), 12-16. |
[38] |
L. Wooldridge, J. Ekeruche-Makinde, H. A. van den Berg, A. Skowera, J. J. Miles, M. P. Tan, G. Dolton, M. Clement, S. Llewellyn-Lacey, D. A. Price, et al., A single autoimmune t cell receptor recognizes more than a million different peptides, Journal of Biological Chemistry, 287 (2012), 1168-1177. |