• Previous Article
    Multistability and localized attractors in a dissipative discrete NLS equation
  • DCDS-B Home
  • This Issue
  • Next Article
    A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates
June  2014, 19(4): 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

On the limit cycles of the Floquet differential equation

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

2. 

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom

Received  April 2012 Revised  February 2014 Published  April 2014

We provide sufficient conditions for the existence of limit cycles for the Floquet differential equations $\dot {\bf x}(t) = A{\bf x}(t)+ε(B(t){\bf x}(t)+b(t))$, where ${\bf x}(t)$ and $b(t)$ are column vectors of length $n$, $A$ and $B(t)$ are $n\times n$ matrices, the components of $b(t)$ and $B(t)$ are $T$--periodic functions, the differential equation $\dot {\bf x}(t)= A{\bf x}(t)$ has a plane filled with $T$--periodic orbits, and $ε$ is a small parameter. The proof of this result is based on averaging theory but only uses linear algebra.
Citation: Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Second Printing, Springer-Verlag, Berlin, 1997.

[2]

A. Buică, J.P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Communication on Pure and Applied Analysis, 6 (2007), 103-111. doi: 10.1016/j.physd.2011.11.007.

[3]

C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999.

[4]

D. G. de Figueiredo, Análise de Fourier e Equaçoes Diferenciais Parciais, Projeto Euclides 5, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977 (in Portuguese).

[5]

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Pure and Applied Mathematics 60, Academic Press, New York, 1974.

[6]

J. Llibre, M.A. Teixeira and J. Torregrosa, Limit cycles bifurcating from a $k$-dimensional isochronous set center contained in $R^n$ with $k \leq n$, Math. Phys. Anal. Geom., 10 (2007), 237-249. doi: 10.1007/s11040-007-9030-7.

[7]

P. Lochak and C. Meunier, Multiphase averaging for classical systems, Appl. Math. Sciences 72, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1044-3.

[8]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[9]

M. Roseau, Vibrations non Linéaires et Théorie de la Stabilité, (French) Springer Tracts in Natural Philosophy, Vol.8 Springer-Verlag, Berlin-New York, 1966.

[10]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Second edition, Applied Mathematical Sci. 59, Springer-Verlag, New York, 2007.

[11]

W. F. Trench, On nonautonomous linear systems of differential and difference equations with R-symmetric coefficient matrices, Linear Algebra Appl., 431 (2009), 2109-2117. doi: 10.1016/j.laa.2009.07.004.

[12]

W. F. Trench, Asymptotic preconditioning of linear homogeneous systems of differential equations, Linear Algebra Appl., 434, (2011), 1631-1637. doi: 10.1016/j.laa.2010.03.026.

[13]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61453-8.

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Second Printing, Springer-Verlag, Berlin, 1997.

[2]

A. Buică, J.P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Communication on Pure and Applied Analysis, 6 (2007), 103-111. doi: 10.1016/j.physd.2011.11.007.

[3]

C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999.

[4]

D. G. de Figueiredo, Análise de Fourier e Equaçoes Diferenciais Parciais, Projeto Euclides 5, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977 (in Portuguese).

[5]

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Pure and Applied Mathematics 60, Academic Press, New York, 1974.

[6]

J. Llibre, M.A. Teixeira and J. Torregrosa, Limit cycles bifurcating from a $k$-dimensional isochronous set center contained in $R^n$ with $k \leq n$, Math. Phys. Anal. Geom., 10 (2007), 237-249. doi: 10.1007/s11040-007-9030-7.

[7]

P. Lochak and C. Meunier, Multiphase averaging for classical systems, Appl. Math. Sciences 72, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1044-3.

[8]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[9]

M. Roseau, Vibrations non Linéaires et Théorie de la Stabilité, (French) Springer Tracts in Natural Philosophy, Vol.8 Springer-Verlag, Berlin-New York, 1966.

[10]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Second edition, Applied Mathematical Sci. 59, Springer-Verlag, New York, 2007.

[11]

W. F. Trench, On nonautonomous linear systems of differential and difference equations with R-symmetric coefficient matrices, Linear Algebra Appl., 431 (2009), 2109-2117. doi: 10.1016/j.laa.2009.07.004.

[12]

W. F. Trench, Asymptotic preconditioning of linear homogeneous systems of differential equations, Linear Algebra Appl., 434, (2011), 1631-1637. doi: 10.1016/j.laa.2010.03.026.

[13]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61453-8.

[1]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[2]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[3]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4531-4543. doi: 10.3934/dcds.2021047

[4]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[5]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[6]

Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779

[7]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[10]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[11]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[12]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[13]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[14]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure and Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[15]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[16]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[17]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[18]

Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753

[19]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[20]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]