\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the limit cycles of the Floquet differential equation

Abstract Related Papers Cited by
  • We provide sufficient conditions for the existence of limit cycles for the Floquet differential equations $\dot {\bf x}(t) = A{\bf x}(t)+ε(B(t){\bf x}(t)+b(t))$, where ${\bf x}(t)$ and $b(t)$ are column vectors of length $n$, $A$ and $B(t)$ are $n\times n$ matrices, the components of $b(t)$ and $B(t)$ are $T$--periodic functions, the differential equation $\dot {\bf x}(t)= A{\bf x}(t)$ has a plane filled with $T$--periodic orbits, and $ε$ is a small parameter. The proof of this result is based on averaging theory but only uses linear algebra.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Second Printing, Springer-Verlag, Berlin, 1997.

    [2]

    A. Buică, J.P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Communication on Pure and Applied Analysis, 6 (2007), 103-111.doi: 10.1016/j.physd.2011.11.007.

    [3]

    C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999.

    [4]

    D. G. de Figueiredo, Análise de Fourier e Equaçoes Diferenciais Parciais, Projeto Euclides 5, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977 (in Portuguese).

    [5]

    M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Pure and Applied Mathematics 60, Academic Press, New York, 1974.

    [6]

    J. Llibre, M.A. Teixeira and J. Torregrosa, Limit cycles bifurcating from a $k$-dimensional isochronous set center contained in $R^n$ with $k \leq n$, Math. Phys. Anal. Geom., 10 (2007), 237-249.doi: 10.1007/s11040-007-9030-7.

    [7]

    P. Lochak and C. Meunier, Multiphase averaging for classical systems, Appl. Math. Sciences 72, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1044-3.

    [8]

    I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

    [9]

    M. Roseau, Vibrations non Linéaires et Théorie de la Stabilité, (French) Springer Tracts in Natural Philosophy, Vol.8 Springer-Verlag, Berlin-New York, 1966.

    [10]

    J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Second edition, Applied Mathematical Sci. 59, Springer-Verlag, New York, 2007.

    [11]

    W. F. Trench, On nonautonomous linear systems of differential and difference equations with R-symmetric coefficient matrices, Linear Algebra Appl., 431 (2009), 2109-2117.doi: 10.1016/j.laa.2009.07.004.

    [12]

    W. F. Trench, Asymptotic preconditioning of linear homogeneous systems of differential equations, Linear Algebra Appl., 434, (2011), 1631-1637.doi: 10.1016/j.laa.2010.03.026.

    [13]

    F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996.doi: 10.1007/978-3-642-61453-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return