\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation

Abstract Related Papers Cited by
  • This paper is devoted to the existence of pullback attractors for the process $\{U(t,\tau)\}_{t\geq \tau}$ associated with the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. We first prove the existence of pullback absorbing sets in $H$ and $V$ for the process $\{U(t,\tau)\}_{t\geq \tau}$ associated with (1)-(8), and then we prove the existence of a pullback attractor in $H$ by the Sobolev compactness embedding theorem. Finally, we obtain the existence of a pullback attractor in $V$ for the process $\{U(t,\tau)\}_{t\geq \tau}$ associated with (1)-(8) by verifying the pullback $\mathcal{D}$ condition $(PDC)$.
    Mathematics Subject Classification: Primary: 37B55; Secondary: 35Q86.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    [2]

    C. S. Cao, E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Communications on Pure and Applied Mathematics, 56 (2003), 198-233.doi: 10.1002/cpa.10056.

    [3]

    C. S. Cao, E. S. Titi and M. Ziane, A "horizontal" hyper-diffusion 3-D thermocline planetary geostrophic model: well-posedness and long-time behavior, Nonlinearity, 17 (2004), 1749-1776.doi: 10.1088/0951-7715/17/5/011.

    [4]

    C. S. Cao, E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large-scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007), 245-267.doi: 10.4007/annals.2007.166.245.

    [5]

    D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dynamics and Systems Theory, 2 (2002), 125-144.

    [6]

    T. Caraballo, G. Łukasiewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111.

    [7]

    V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, volume 49 of American Mathematical Society Colloquium Publications, AMS, Providence, RI, 2002.

    [8]

    B. D. Ewaldy, R. Temam, Maximum principles for the primitive equations of the atmosphere, Discrete and Continuous Dynamical Systems- A, 7 (2001), 343-362.doi: 10.3934/dcds.2001.7.343.

    [9]

    P. E. Kloeden, B. Schmalfuß, Non-autonomous systems, cocycle attractors and variable time-step discretization, Numerical Algorithms, 14 (1997), 141-152.doi: 10.1023/A:1019156812251.

    [10]

    P. E. Kloeden, D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998), 211-226.

    [11]

    Y. J. Li, C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Applied Mathematics and Computation, 190 (2007), 1020-1029.doi: 10.1016/j.amc.2006.11.187.

    [12]

    Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p,$ Applied Mathematics and Computation, 207 (2009), 373-379.doi: 10.1016/j.amc.2008.10.065.

    [13]

    J. Pedlosky, The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 Academic Press, (1984) 448-455.doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2.

    [14]

    J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.doi: 10.1115/1.3157711.

    [15]

    N. A. Phillips, Geostrophic motion, Reviews of Geophysics, 1 (1963), 123-176.doi: 10.1029/RG001i002p00123.

    [16]

    A. Robinson, H. Stommel, The oceanic thermocline and associated thermohaline circulation, Tellus, 11 (1959), 295-308.doi: 10.1111/j.2153-3490.1959.tb00035.x.

    [17]

    B. Schmalfuß, Attractors for non-autonomous dynamical systems, in Proc. Equadiff 99 (eds. B. Fiedler, K. Gröer and J. Sprekels), Berlin, World Scientific, Singapore, (2000), 684-689.

    [18]

    R. M. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Applicable Analysis, 70 (1998), 147-173.doi: 10.1080/00036819808840682.

    [19]

    R. M. Samelson, R. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential and Integral Equations, 13 (2000), 1-14.

    [20]

    R. M. Samelson, G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2.

    [21]

    R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York, Springer-Verlag, 1997.

    [22]

    P. Welander, An advective model of the ocean thermocline, Tellus, 11 (1959), 309-318.doi: 10.1111/j.2153-3490.1959.tb00036.x.

    [23]

    Y. H. Wang, C. K. Zhong, Pullback $\mathcalD$-attractors for nonautonomous sine-Gordon equations, Nonlinear Analysis, 67 (2007), 2137-2148.doi: 10.1016/j.na.2006.09.019.

    [24]

    B. You, C. K. Zhong and F. Li, Regularity of the global attractor for three dimensional planetary geostrophic viscous equations of large-scale ocean circulation, in preparation.

    [25]

    L. Yang, M. H. Yang and P. E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with a dynamical boundary condition, Discrete Continuous Dynam. Systems - B, 17 (2012), 2635-2651.doi: 10.3934/dcdsb.2012.17.2635.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return