Advanced Search
Article Contents
Article Contents

Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$

Abstract Related Papers Cited by
  • Aggregation equations and parabolic-elliptic Patlak-Keller-Segel (PKS) systems for chemotaxis with nonlinear diffusion are popular models for nonlocal aggregation phenomenon and are a source of many interesting mathematical problems in nonlinear PDEs. The purpose of this work is to give a more complete study of local, subcritical and small-data critical/supercritical theory in $\mathbb{R}^d$, $d \geq 2$. Some existing results can be found in the literature; however, one of the most important cases in biological applications, that is the $\mathbb{R}^2$ case, had not been studied. In this paper, we treat two related systems, which are different generalizations of the classical parabolic-elliptic PKS model. In the first class, nonlocal aggregation is modeled by convolution with a general interaction potential, studied in this generality in our previous work [6]. For this class of models we also present several large data global existence results for critical problems. The second class is a variety of PKS models with spatially inhomogeneous diffusion and decay rate of the chemo-attractant, which is potentially relevant to biological applications and raises interesting mathematical questions.
    Mathematics Subject Classification: Primary: 35K55, 35K15; Secondary: 35K65.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Gigli and G. Savaŕe, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, Birkhäuser, 2005.


    J. Azzam and J. Bedrossian, Bounded mean oscillation and the uniqueness of active scalars, To appear in Trans. Amer. Math. Soc.,


    J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion, Appl. Math. Letters, 24 (2011), 1927-1932.doi: 10.1016/j.aml.2011.05.022.


    J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models, Comm. Math. Sci., 9 (2011), 1143-1161.doi: 10.4310/CMS.2011.v9.n4.a11.


    J. Bedrossian and I. Kim, Global existence and finite time blow-up for critical Patlak-Keller-Segel models with inhomogeneous diffusion, SIAM J. Math. Anal., 45 (2013), 934-964. arXiv:1108.5301.doi: 10.1137/120882731.


    J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.doi: 10.1088/0951-7715/24/6/001.


    Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 48 of Colloquium Publications, American Mathematical Society, 2000.


    A. Bertozzi and J. Brandman, Finite-time blow-up of $L^\infty$-weak solutions of an aggregation equation, Comm. Math. Sci., 8 (2010), 45-65.doi: 10.4310/CMS.2010.v8.n1.a4.


    A. Bertozzi and D. Slepčev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Comm. Pure. Appl. Anal., 9 (2010), 1617-1637.doi: 10.3934/cpaa.2010.9.1617.


    P. Biler and T. Nadzieja, Global and exploding solutions in a model of self-gravitating systems, Reports on Mathematical Physics, 52 (2003), 205-225, URL http://www.sciencedirect.com/science/article/pii/S0034487703900139.doi: 10.1016/S0034-4877(03)90013-9.


    A. Blanchet, On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher, arXiv:1109.1543.


    A. Blanchet, V. Calvez and J. Carrillo, Convergence of the mass-transport steepest descent scheme for subcritical Patlak-Keller-Segel model, SIAM J. Num. Anal., 46 (2008), 691-721.doi: 10.1137/070683337.


    A. Blanchet, E. Carlen and J. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, Journal of Functional Analysis, 262 (2012), 2142-2230. arXiv:1009.0134.doi: 10.1016/j.jfa.2011.12.012.


    A. Blanchet, J. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var., 35 (2009), 133-168.doi: 10.1007/s00526-008-0200-7.


    A. Blanchet, J. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$, Comm. Pure Appl. Math., 61 (2008), 1449-1481.doi: 10.1002/cpa.20225.


    A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernández, Asymptotic behavior for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, J. Math. Anal. Appl., 361 (2010), 533-542.doi: 10.1016/j.jmaa.2009.07.034.


    A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, E. J. Diff. Eqn, 2006 (2006), 1-32.


    S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Anal. Real World Appl., 1 (2000), 163-176, Spatial heterogeneity in ecological models (Alcalá de Henares, 1998).doi: 10.1016/S0362-546X(99)00399-5.


    M. Brenner, P. Constantin, L. Kadanoff, A. Schenkel and S. Venkataramani, Diffusion, attraction and collapse, Nonlinearity, 12 (1999), 1071-1098.doi: 10.1088/0951-7715/12/4/320.


    M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlin. Anal. Real World Appl., 8 (2007), 939-958.doi: 10.1016/j.nonrwa.2006.04.002.


    M. Burger, M. D. Francesco and M. Franek, Stationary states of quadratic diffusion equations with long-range attraction, Communications in Mathematical Sciences, 11 (2013), 709-738. arXiv:1103.5365.doi: 10.4310/CMS.2013.v11.n3.a3.


    V. Calvez and J. Carrillo, Volume effects in the {Keller-Segel} model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155-175.doi: 10.1016/j.matpur.2006.04.002.


    E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbb S^n$, Geom. Func. Anal., 2 (1992), 90-104.doi: 10.1007/BF01895706.


    J. Carrillo, A. Jüngel, P. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Montash. Math., 133 (2001), 1-82.doi: 10.1007/s006050170032.


    P. Chavanis, J. Sommeria and R. Robert, Statistical mechanics of two-dimensional vortices and collisionless stellar systems, The Astrophysical Journal, 471 (1996), 385.doi: 10.1086/177977.


    L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28.doi: 10.1007/s00032-003-0026-x.


    J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in $\mathbb R^2$, C.R. Acad. Sci. Paris, Sér I Math, 339 (2004), 611-616.doi: 10.1016/j.crma.2004.08.011.


    L. Evans, Partial Differential Equations, vol. 19 of Grad. Stud. Math., American Mathematical Society, 1998.


    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, 2001.


    E. M. Gurtin and R. McCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.doi: 10.1016/0025-5564(77)90062-1.


    T. Hillen and K. J. Painter, A user's guide to {PDE} models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.


    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math.-Verein, 105 (2003), 103-165.


    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differntial equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.2307/2153966.


    E. F. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.


    R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, Amer. Math. Soc., Providence, RI, Clay Math. Proc.,, Evolution equations, 17 (2013), 325-437.


    I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: Properties of solutions via maximum principle, SIAM J. Math. Anal., 44 (2), (2012), 568-602


    R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566-588.doi: 10.1016/j.jmaa.2004.12.009.


    E. Lieb and M. Loss, Analysis, vol. 14 of Grad. Stud. Math., American Mathematical Society, 2001.


    G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.


    P. Lions, The concentration-compactness principle in the calculus of variations. the locally compact case, part 1, Ann. I.H.P., Anal. Nonlin., 1 (1984), 109-145.


    S. Luckhaus and Y. Sugiyama, Large time behavior of solutions in super-critical case to degenerate Keller-Segel systems, Math. Model. Numer. Anal., 40 (2006), 597-621.doi: 10.1051/m2an:2006025.


    S. Luckhaus and Y. Sugiyama, Asymptotic profile with optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J., 56 (2007), 1279-1297.doi: 10.1512/iumj.2007.56.2977.


    P. A. Milewski and X. Yang, A simple model for biological aggregation with asymmetric sensing, Comm. Math. Sci., 6 (2008), 397-416.doi: 10.4310/CMS.2008.v6.n2.a7.


    A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.doi: 10.1007/s002850050158.


    D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, Journal of mathematical biology, 50 (2005), 49-66.doi: 10.1007/s00285-004-0279-1.


    T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.


    A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Advances in Biophysics, 22 (1986), 1-94.doi: 10.1016/0065-227X(86)90003-1.


    F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Part. Diff. Eqn., 26 (2001), 101-174.doi: 10.1081/PDE-100002243.


    C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.doi: 10.1007/BF02476407.


    B. Perthame and A. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi method, Commun. Math. Sci., 10 (2012), 463-476.doi: 10.4310/CMS.2012.v10.n2.a2.


    R. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, vol. 49 of Math. Surveys and Monographs, American Mathematical Society, 1997.


    E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.


    Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Eqns., 19 (2006), 841-876.


    Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Diff. Eqns., 12 (2007), 121-144.


    Y. Sugiyama, The global existence and asymptotic behavior of solutions to degenerate to quasi-linear parabolic systems of chemotaxis, Diff. Int. Eqns., 20 (2007), 133-180.


    C. Topaz and A. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.doi: 10.1137/S0036139903437424.


    C. Topaz, A. Bertozzi and M. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Bio, 68 (2006), 1601-1623.doi: 10.1007/s11538-006-9088-6.


    M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.


    T. Witelski, A. Bernoff and A. Bertozzi, Blowup and dissipation in a critical-case unstable thin film equation, Euro. J. Appl. Math., 15 (2004), 223-256.doi: 10.1017/S0956792504005418.

  • 加载中

Article Metrics

HTML views() PDF downloads(135) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint