-
Previous Article
Cops on the dots in a mathematical model of urban crime and police response
- DCDS-B Home
- This Issue
-
Next Article
Paladins as predators: Invasive waves in a spatial evolutionary adversarial game
Gang rivalry dynamics via coupled point process networks
1. | School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States |
2. | Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, CA 95053, United States |
3. | Department of Anthropology, UCLA, Los Angeles, CA 90095, United States |
4. | Department of Criminology, Law and Society, UC Irvine, Irvine, CA 92697, United States |
References:
[1] |
E. Anderson, Code of the Street: Decency, Violence, and the Moral Life of the Inner City, Norton, New York, 1999. |
[2] |
C. Boehm, Blood Revenge: The Anthropology of Feuding in Montenegro and Other Tribal Societies, University of Pennsylvania Press, Philadelphia, 1987. |
[3] |
M. Cooney, Warriors and Peacemakers: How Third Parties Shape Violence, New York University Press, New York, 1998. |
[4] |
D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, $2^{nd}$ edition, Springer, New York, 2008. |
[5] |
S. H. Decker and G. D. Curry, Gangs, gang homicides, and gang loyalty: Organized crimes or disorganized criminals, Journal of Criminal Justice, 30 (2002), 343-352. |
[6] |
M. Egesdal, C. Fathauer, K. Louie and J. Neuman, Statistical and stochastic modeling of gang rivalries in Los Angeles, SIURO, 3 (2010), 72-94.
doi: 10.1137/09S010459. |
[7] |
J. Fagan, The social organization of drug use and drug dealing among urbang gangs, Criminology, 27 (1989), 633-670. |
[8] |
G. Farrell and K. Pease (eds.), Repeat Victimization, Criminal Justice Press, New York, 2001. |
[9] |
M. R. Gottfredson and T. Hirshi, A General Theory of Crime, Stanford University Press, 1990. |
[10] |
R. A. Hegemann, L. M. Smith, A. Barbaro, A. L. Bertozzi, S. Reid and G. E. Tita, Geographical influences of an emerging network of gang rivalries, Physica A, 390 (2011), 3894-3914.
doi: 10.1016/j.physa.2011.05.040. |
[11] |
J. Hespanha, An efficient MATLAB Algorithm for Graph Partitioning, Technical report, 2004. Available from: http://www.ece.ucsb.edu/~hespanha/techrep.html. |
[12] |
B. A. Jacobs and R. Wright, Street Justice: Retaliation in the Criminal Underworld, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511816055. |
[13] |
S. D. Johnson, Repeat burglary victimisation: A tale of two theories, Journal of Experimental Criminology, 4 (2008), 215-240.
doi: 10.1007/s11292-008-9055-3. |
[14] |
P. Jones, P. J. Brantingham and L. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, M3AS, 20 (2010), 1397-1423.
doi: 10.1142/S0218202510004647. |
[15] |
M. W. Klein and C. L. Maxson, Street Gang Patterns and Policies, Oxford University Press, New York, 2006.
doi: 10.1093/acprof:oso/9780195163445.001.0001. |
[16] |
E. Lewis, G. O. Mohler, P. J. Brantingham and A. Bertozzi, Self-exciting point process models of civilian deaths in Iraq, Security Journal, 25 (2011), 244-264.
doi: 10.1057/sj.2011.21. |
[17] |
C. Maxson, Street gangs, in Crime and Public Policy (eds. J. Q. Wilson and J. Petersilia), Oxford University Press, New York, (2011), 158-182. |
[18] |
G. O. Mohler, M. B. Short, P. J. Brantingham, F. Schoenberg and G. E. Tita, Self-exciting point process modeling of crime, Journal of the American Statistical Association, 106 (2011), 100-108.
doi: 10.1198/jasa.2011.ap09546. |
[19] |
Y. Ogata, Space-time point process models for earthquake occurrences, Ann. Inst. Statist. Math., 50 (1998), 379-402.
doi: 10.1023/A:1003403601725. |
[20] |
Y. Ogata, On lewis' simulation method for point processes, IEEE, 27 (1981), 23-31.
doi: 10.1109/TIT.1981.1056305. |
[21] |
Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes, Journal of American Statistical Association, 83 (1988), 9-27.
doi: 10.2307/2288914. |
[22] |
A. V. Papachristos, Murder by Structure: A Network Theory of Gang Homicide, Ph.D thesis, University of Chicago, 2007. |
[23] |
A. V. Papachristos, Murder by structure: Dominance relations and the social structure of gang homicide, American Journal of Sociology, 115 (2009), 74-128. |
[24] |
S. Phillips and M. Cooney, Aiding peace, abetting violence: Third parties and the management of conflict, American Sociological Review, 70 (2005), 334-354.
doi: 10.1177/000312240507000207. |
[25] |
A. M. Piehl, D. M. Kennedy and A. A. Braga, Problem solving and youth violence: An evaluation of the Boston Gun Project, American Law and Economics Review, 2 (2000), 58-106.
doi: 10.1093/aler/2.1.58. |
[26] |
A. B. Pitcher, Adding police to a mathematical model of burglary, European Journal of Applied Mathematics, 21 (2010), 401-419.
doi: 10.1017/S0956792510000112. |
[27] |
S. Ross, Simulation, Second edition. Statistical Modeling and Decision Science. Academic Press, Inc., San Diego, CA, 1997. |
[28] |
S. M. Radil, C. Flint and G. E. Tita, Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality and violence in Los Angeles, Annals of the Association of American Geographers, 100 (2010), 307-326.
doi: 10.1080/00045600903550428. |
[29] |
N. Rodriguez and A. L. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, M3AS, 20 (2010), 1425-1457.
doi: 10.1142/S0218202510004696. |
[30] |
T. A. Taniguchi, J. H. Ratcliffe and R. B. Taylor, Gang set space, drug markets, and drime around drug corners in Camden, Journal of Research in Crime and Delinquency, 48 (2011), 327-363. |
[31] |
G. E. Tita and G. Ridgeway, The impact of gang formation on local patterns of crime, Journal of Research in Crime and Delinquency, 44 (2007), 208-237.
doi: 10.1177/0022427806298356. |
[32] |
G. E. Tita, J. K. Riley, G. Ridgeway, C. Grammich, A. F. Abrahamse and P. Greenwood, Reducing Gun Violence: Results from and Intervention in East Los Angeles, RAND Press, Santa Monica, 2003. |
[33] |
M. B. Short, M. R. D'Orsogna, V. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. Chayes, A statistical model of criminal behavior, M3AS, 18 (2008), 1249-1267.
doi: 10.1142/S0218202508003029. |
[34] |
M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, PNAS, 107 (2010), 3961-3965.
doi: 10.1073/pnas.0910921107. |
[35] |
M. B. Short, M. R. D'Orsogna, P. J. Brantingham and G. E. Tita, Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25 (2009), 325-339.
doi: 10.1007/s10940-009-9068-8. |
show all references
References:
[1] |
E. Anderson, Code of the Street: Decency, Violence, and the Moral Life of the Inner City, Norton, New York, 1999. |
[2] |
C. Boehm, Blood Revenge: The Anthropology of Feuding in Montenegro and Other Tribal Societies, University of Pennsylvania Press, Philadelphia, 1987. |
[3] |
M. Cooney, Warriors and Peacemakers: How Third Parties Shape Violence, New York University Press, New York, 1998. |
[4] |
D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, $2^{nd}$ edition, Springer, New York, 2008. |
[5] |
S. H. Decker and G. D. Curry, Gangs, gang homicides, and gang loyalty: Organized crimes or disorganized criminals, Journal of Criminal Justice, 30 (2002), 343-352. |
[6] |
M. Egesdal, C. Fathauer, K. Louie and J. Neuman, Statistical and stochastic modeling of gang rivalries in Los Angeles, SIURO, 3 (2010), 72-94.
doi: 10.1137/09S010459. |
[7] |
J. Fagan, The social organization of drug use and drug dealing among urbang gangs, Criminology, 27 (1989), 633-670. |
[8] |
G. Farrell and K. Pease (eds.), Repeat Victimization, Criminal Justice Press, New York, 2001. |
[9] |
M. R. Gottfredson and T. Hirshi, A General Theory of Crime, Stanford University Press, 1990. |
[10] |
R. A. Hegemann, L. M. Smith, A. Barbaro, A. L. Bertozzi, S. Reid and G. E. Tita, Geographical influences of an emerging network of gang rivalries, Physica A, 390 (2011), 3894-3914.
doi: 10.1016/j.physa.2011.05.040. |
[11] |
J. Hespanha, An efficient MATLAB Algorithm for Graph Partitioning, Technical report, 2004. Available from: http://www.ece.ucsb.edu/~hespanha/techrep.html. |
[12] |
B. A. Jacobs and R. Wright, Street Justice: Retaliation in the Criminal Underworld, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511816055. |
[13] |
S. D. Johnson, Repeat burglary victimisation: A tale of two theories, Journal of Experimental Criminology, 4 (2008), 215-240.
doi: 10.1007/s11292-008-9055-3. |
[14] |
P. Jones, P. J. Brantingham and L. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, M3AS, 20 (2010), 1397-1423.
doi: 10.1142/S0218202510004647. |
[15] |
M. W. Klein and C. L. Maxson, Street Gang Patterns and Policies, Oxford University Press, New York, 2006.
doi: 10.1093/acprof:oso/9780195163445.001.0001. |
[16] |
E. Lewis, G. O. Mohler, P. J. Brantingham and A. Bertozzi, Self-exciting point process models of civilian deaths in Iraq, Security Journal, 25 (2011), 244-264.
doi: 10.1057/sj.2011.21. |
[17] |
C. Maxson, Street gangs, in Crime and Public Policy (eds. J. Q. Wilson and J. Petersilia), Oxford University Press, New York, (2011), 158-182. |
[18] |
G. O. Mohler, M. B. Short, P. J. Brantingham, F. Schoenberg and G. E. Tita, Self-exciting point process modeling of crime, Journal of the American Statistical Association, 106 (2011), 100-108.
doi: 10.1198/jasa.2011.ap09546. |
[19] |
Y. Ogata, Space-time point process models for earthquake occurrences, Ann. Inst. Statist. Math., 50 (1998), 379-402.
doi: 10.1023/A:1003403601725. |
[20] |
Y. Ogata, On lewis' simulation method for point processes, IEEE, 27 (1981), 23-31.
doi: 10.1109/TIT.1981.1056305. |
[21] |
Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes, Journal of American Statistical Association, 83 (1988), 9-27.
doi: 10.2307/2288914. |
[22] |
A. V. Papachristos, Murder by Structure: A Network Theory of Gang Homicide, Ph.D thesis, University of Chicago, 2007. |
[23] |
A. V. Papachristos, Murder by structure: Dominance relations and the social structure of gang homicide, American Journal of Sociology, 115 (2009), 74-128. |
[24] |
S. Phillips and M. Cooney, Aiding peace, abetting violence: Third parties and the management of conflict, American Sociological Review, 70 (2005), 334-354.
doi: 10.1177/000312240507000207. |
[25] |
A. M. Piehl, D. M. Kennedy and A. A. Braga, Problem solving and youth violence: An evaluation of the Boston Gun Project, American Law and Economics Review, 2 (2000), 58-106.
doi: 10.1093/aler/2.1.58. |
[26] |
A. B. Pitcher, Adding police to a mathematical model of burglary, European Journal of Applied Mathematics, 21 (2010), 401-419.
doi: 10.1017/S0956792510000112. |
[27] |
S. Ross, Simulation, Second edition. Statistical Modeling and Decision Science. Academic Press, Inc., San Diego, CA, 1997. |
[28] |
S. M. Radil, C. Flint and G. E. Tita, Spatializing social networks: Using social network analysis to investigate geographies of gang rivalry, territoriality and violence in Los Angeles, Annals of the Association of American Geographers, 100 (2010), 307-326.
doi: 10.1080/00045600903550428. |
[29] |
N. Rodriguez and A. L. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, M3AS, 20 (2010), 1425-1457.
doi: 10.1142/S0218202510004696. |
[30] |
T. A. Taniguchi, J. H. Ratcliffe and R. B. Taylor, Gang set space, drug markets, and drime around drug corners in Camden, Journal of Research in Crime and Delinquency, 48 (2011), 327-363. |
[31] |
G. E. Tita and G. Ridgeway, The impact of gang formation on local patterns of crime, Journal of Research in Crime and Delinquency, 44 (2007), 208-237.
doi: 10.1177/0022427806298356. |
[32] |
G. E. Tita, J. K. Riley, G. Ridgeway, C. Grammich, A. F. Abrahamse and P. Greenwood, Reducing Gun Violence: Results from and Intervention in East Los Angeles, RAND Press, Santa Monica, 2003. |
[33] |
M. B. Short, M. R. D'Orsogna, V. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. Chayes, A statistical model of criminal behavior, M3AS, 18 (2008), 1249-1267.
doi: 10.1142/S0218202508003029. |
[34] |
M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, PNAS, 107 (2010), 3961-3965.
doi: 10.1073/pnas.0910921107. |
[35] |
M. B. Short, M. R. D'Orsogna, P. J. Brantingham and G. E. Tita, Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25 (2009), 325-339.
doi: 10.1007/s10940-009-9068-8. |
[1] |
H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1 |
[2] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[3] |
Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355 |
[4] |
Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877 |
[5] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[6] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189 |
[7] |
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279 |
[8] |
K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573 |
[9] |
Laura Gardini, Iryna Sushko. Preface: Special issue on nonlinear dynamical systems in economic modeling. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : i-iv. doi: 10.3934/dcdsb.2021241 |
[10] |
Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129 |
[11] |
Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103 |
[12] |
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777 |
[13] |
Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487 |
[14] |
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 |
[15] |
Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571 |
[16] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[17] |
Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291 |
[18] |
Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002 |
[19] |
Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311 |
[20] |
David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161. |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]