Citation: |
[1] |
V. Abramov, F. Klebaner and R. Liptser, The Euler-Maruyama approximations for the CEV model, Discrete and Continuous Dynamical Systems. Series B, 16 (2011), 1-14.doi: 10.3934/dcdsb.2011.16.1. |
[2] |
E. Akyildirim, Y. Dolinsky and H. M. Soner, Approximating stochastic volatility by recombinant trees, preprint, arXiv:1205.3555, 2012. |
[3] |
K. I. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.doi: 10.2307/2331407. |
[4] |
P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. |
[5] |
S. Borovkova, R. Burton and H. Dehling, Limit theorems for functionals of mixing processes with application to U-statistics and dimension estimation, Trans. Amer. Math. Soc., 353 (2001), 4261-4318.doi: 10.1090/S0002-9947-01-02819-7. |
[6] |
J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics, Probab. Theory and Relat. Fields, 132 (2005), 203-236.doi: 10.1007/s00440-004-0394-3. |
[7] |
N. G. Dokuchaev, Mathematical Finance: Core Theory, Problems, and Statistical Algorithms, Routledge, London and New York, 2007.doi: 10.4324/9780203964729. |
[8] |
N. Dokuchaev, Discrete time market with serial correlations and optimal myopic strategies, European Journal of Operational Research, 177 (2007), 1090-1104.doi: 10.1016/j.ejor.2006.01.004. |
[9] |
N. Dokuchaev, On statistical indistinguishability of the complete and incomplete markets, preprint, arXiv:1209.4695, 2012.doi: 10.2139/ssrn.2149951. |
[10] |
M. D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Annals of Mathematical Statistics, 23 (1952), 277-281.doi: 10.1214/aoms/1177729445. |
[11] |
D. Heath, R. Jarrow and A. Morton, Bond pricing and the term structure of interest rates: A discrete time approximation, Journal of Financial and Quantitative Analysis, 25 (1990), 419-440.doi: 10.2307/2331009. |
[12] |
D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of numerical methods for nonlinear stochastic differential equations, SIAM J. Num. Anal., 40 (2002), 1041-1063.doi: 10.1137/S0036142901389530. |
[13] |
I. A. Ibragimov, Some limit theorems for stationary processes, Theory of probability and its applications, 7 (1962), 361-392. |
[14] |
I. A. Ibragimov, Properties of sample functions of stochastic processes and embedding theorems, Theory of probability and its applications, 18 (1973), 442-453.doi: 10.1137/1118059. |
[15] |
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.doi: 10.1007/978-3-662-12616-5. |
[16] |
D. B. Nelson and K. Ramaswamy, Simple binomial processes as diffusion approximations in financial models, Review of Financial Studies, 3 (1990), 393-430.doi: 10.1093/rfs/3.3.393. |
[17] |
R. Nickl, M. Reiş, J. Söhl and M. Trabs, High-frequency Donsker theorems for Lévy measures, preprint, arXiv:1310.2523, 2013. |
[18] |
A. Rodkina and N. Dokuchaev, Instability and stability of solutions of systems of nonlinear stochastic difference equations with diagonal noise, Journal of Difference Equations and Applications, 20 (2014), 744-764.doi: 10.1080/10236198.2013.815748. |
[19] |
A. Rodkina and N. Dokuchaev, On asymptotic optimality of Merton's myopic portfolio strategies for discrete time market, preprint, arXiv:1403.4329, 2014. |
[20] |
C. Tudor and S. Torres, Donsker theorem for the Rosenblatt process and a binary market model, Stoch. Anal. Appl., 27 (2009), 555-573. arXiv:math/0703085.doi: 10.1080/07362990902844371. |
[21] |
A. van der Vaart and H. van Zanten, Donsker theorems for diffusions: Necessary and sufficient conditions, Annals of Probability, 33 (2005), 1422-1451.doi: 10.1214/009117905000000152. |