Citation: |
[1] |
S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc., 117 (1993), 199-204.doi: 10.1090/S0002-9939-1993-1143013-3. |
[2] |
S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra systems, Proc. Amer. Math. Soc., 127 (1999), 2905-2910.doi: 10.1090/S0002-9939-99-05083-2. |
[3] |
S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system, Nonlinear Anal., 40 (2000), 37-49.doi: 10.1016/S0362-546X(00)85003-8. |
[4] |
W. G. Aiello and H. I. Freedman, A time delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-153. |
[5] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.doi: 10.1137/S0036141000376086. |
[6] |
F. D. Chen, Z. Li and X. D. Xie, Permanence of a nonlinear integro-differential prey-competition model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 2290-2297.doi: 10.1016/j.cnsns.2007.05.022. |
[7] |
F. D. Chen, X. D. Xie and J. L. Shi, Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays, J. Comput. Appl. Math., 194 (2006), 368-387.doi: 10.1016/j.cam.2005.08.005. |
[8] |
Z. J. Du and Y. S. Lv, Permanence and Almost Periodic Solution of a Lotka-Volterra Model with mutual interference and time delays, Appl. Math. Model., 3 (2013), 1054-1068.doi: 10.1016/j.apm.2012.03.022. |
[9] |
H. I. Freedman, Stability analysis of a predator-prey system with mutual interference and density-dependent death rates, Bull. Math. Biol., 41 (1979), 67-78.doi: 10.1016/S0092-8240(79)80054-3. |
[10] |
H. I. Freedman and V. S. H. Rao, The trade-off between mutual interference and time lags in predator-prey system, Bull. Math. Biol., 45 (1983), 991-1004.doi: 10.1016/S0092-8240(83)80073-1. |
[11] |
H. J. Guo and X. X. Chen, Existence and global attractivity of positive periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response, Appl. Math. Comput., 217 (2011), 5830-5837.doi: 10.1016/j.amc.2010.12.065. |
[12] |
G. H. Guo and J. H. Wu, The effect of mutual interference between predators on a predator-prey model with diffusion, J. Math. Anal. Appl., 389 (2012), 179-194.doi: 10.1016/j.jmaa.2011.11.044. |
[13] |
M. P. Hassell, Density dependence in single-species population, J. Anim. Ecol., 44 (1975), 283-295.doi: 10.2307/3863. |
[14] |
S. B. Hsu, T. W. Hwang and Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Disc. Cont. Dyn. Sys. B, 10 (2008), 857-871.doi: 10.3934/dcdsb.2008.10.857. |
[15] |
H. J. Hu and L. H. Huang, Stability and Hopf bifurcation in a delayed predator-prey system with stage structure for prey, Nonlinear Analysis RWA, 11 (2010), 2757-2769.doi: 10.1016/j.nonrwa.2009.10.001. |
[16] |
Z. Li, F. D. Chen and M. X. He, Permanence and global attractivity of a periodic predator-prey system with mutual interference and impulses, Commun Nonlinear Sci Numer Simulat, 17 (2012), 444-453.doi: 10.1016/j.cnsns.2011.05.026. |
[17] |
X. Lin and F. D. Chen, Almost periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response, Appl. Math. Comput., 214 (2009), 548-556.doi: 10.1016/j.amc.2009.04.028. |
[18] |
S. Q. Liu, L. S. Chen, G. L. Luo and Y. L. Jiang, Asymptotic behaviors of competitive Lotka-Volterra system with stage structure, J. Math. Anal. Appl., 271 (2002), 124-138.doi: 10.1016/S0022-247X(02)00103-8. |
[19] |
S. Q. Liu, L. S. Chen and Z. J. Liu, Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 274 (2002), 667-684.doi: 10.1016/S0022-247X(02)00329-3. |
[20] |
Y. S. Lv and Z. J. Du, Existence and global attractivity of a positive periodic solution to a Lotka-Volterra model with mutual interference and Holling III type functional response, Nonlinear Analysis RWA, 12 (2011), 3654-3664.doi: 10.1016/j.nonrwa.2011.06.022. |
[21] |
F. Montes De Oca and M. L. Zeeman, Extinction in nonautonomous competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 124 (1996), 3677-3687.doi: 10.1090/S0002-9939-96-03355-2. |
[22] |
F. Montes De Oca and L. Pérez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay, Nonlinear Anal., 75 (2012), 758-768.doi: 10.1016/j.na.2011.09.009. |
[23] |
S. G. Ruan and H. I. Freedman, Persistence in three-species food chain models with group defense, Math. Biosci., 107 (1991), 111-125.doi: 10.1016/0025-5564(91)90074-S. |
[24] |
Z. D. Teng, Uniform persistence of the periodic predator-prey Lotka-Volterra systems, Appl. Anal., 72 (1998), 339-352.doi: 10.1080/00036819908840745. |
[25] |
K. Wang, Permanence and global asymptotical stability of a predator-prey model with mutual interference, Nonlinear Analysis RWA, 12 (2011), 1062-1071.doi: 10.1016/j.nonrwa.2010.08.028. |
[26] |
K. Wang, Existence and global asymptotic stability of positive periodic solution for a predator-prey system with mutual interference, Nonlinear Analysis RWA, 10 (2009), 2774-2783.doi: 10.1016/j.nonrwa.2008.08.015. |
[27] |
X. L. Wang, Z. J. Du and J. Liang, Existence and global attractivity of positive periodic solution to a Lotka-Volterra model, Nonlinear Analysis RWA, 11 (2010), 4054-4061.doi: 10.1016/j.nonrwa.2010.03.011. |
[28] |
K. Wang and Y. L. Zhu, Global attractivity of positive periodic solution for a Volterra model, Appl. Math. Comput., 203 (2008), 493-501.doi: 10.1016/j.amc.2008.04.005. |
[29] |
R. Xu, Global dynamics of a predator-prey model with time delay and stage structure for the prey, Nonlinear Analysis RWA, 12 (2011), 2151-2162.doi: 10.1016/j.nonrwa.2010.12.029. |
[30] |
R. Xu, M. A. J. Chaplain and F. A. Davidson, Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay, Appl. Math. Comput., 159 (2004), 863-880.doi: 10.1016/j.amc.2003.11.008. |
[31] |
G. H. Zhu, X. Z. Meng and L. S. Chen, The dynamics of a mutual interference age structured predator-prey model with time delay and impulsive perturbations on predators, Appl. Math. Comput., 216 (2010), 308-316.doi: 10.1016/j.amc.2010.01.064. |