Citation: |
[1] |
C. Browne and S. Pilyugin, Periodic multidrug therapy in a within-host virus model, Bulletin of Mathematical Biology, 74 (2012), 562-589.doi: 10.1007/s11538-011-9677-x. |
[2] |
K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, in Mathematical Models in Medicine, Lecture Notes in Biomathematics 11, Springer-Verlag, New York, 11 (1976), 1-15.doi: 10.1007/978-3-642-93048-5_1. |
[3] |
S. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerging Infectious Diseases, 7 (2001), 369-374. |
[4] |
P. De Leenheer, Within-host virus models with periodic antiviral therapy, Bulletin of Mathematical Biology, 71 (2009), 189-210.doi: 10.1007/s11538-008-9359-5. |
[5] |
N. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proceedings of the Royal Society B: Biological Sciences, 273 (2006), 2541-2550.doi: 10.1098/rspb.2006.3604. |
[6] |
A. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proceedings of the National Academy of Sciences, 93 (1996), 7247-7251.doi: 10.1073/pnas.93.14.7247. |
[7] |
H. Hethcote, Asymptotic behavior in a deterministic epidemic model, Bulletin of Mathematical Biology, 36 (1973), 607-614. |
[8] |
D. Ho and Y. Huang, The HIV-1 vaccine race, Cell, 110 (2002), 135-138.doi: 10.1016/S0092-8674(02)00832-2. |
[9] |
Y. Huang, S. Rosenkranz and H. Wu, Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity, Mathematical Biosciences, 184 (2003), 165-186.doi: 10.1016/S0025-5564(03)00058-0. |
[10] |
T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proceedings of the National Academy of Sciences, 95 (1998), 11514-11519.doi: 10.1073/pnas.95.20.11514. |
[11] |
S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Mathematical biosciences and engineering, 7 (2010), 675-685.doi: 10.3934/mbe.2010.7.675. |
[12] |
Y. Lou and X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete and Continuous Dynamical Systems. Series B, 12 (2009), 169-186.doi: 10.3934/dcdsb.2009.12.169. |
[13] |
Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM Journal on Applied Mathematics, 70 (2010), 2023-2044.doi: 10.1137/080744438. |
[14] |
J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, Journal of Mathematical Biology, 65 (2012), 623-652.doi: 10.1007/s00285-011-0474-9. |
[15] |
Z. Ma, M. Stone, M. Piatak, B. Schweighardt, N. L. Haigwood, D. Montefiori, J. D. Lifson, M. Busch and C. J. Miller, High specific infectivity of plasma virus from the pre-ramp and ramp up stages of acute simian immunodeficiency virus infection, Journal of Virology, 83 (2009), 3288-3297.doi: 10.1128/JVI.02423-08. |
[16] |
M. Martcheva, A non-autonomous multi-strain SIS epidemic model, Journal of Biological Dynamics, 3 (2009), 235-251.doi: 10.1080/17513750802638712. |
[17] |
P. Nelson, J. Murray and A. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Mathematical Biosciences, 163 (2000), 201-215.doi: 10.1016/S0025-5564(99)00055-3. |
[18] |
P. Nelson, J. Mittler and A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters, Journal of Acquired Immune Deficiency Syndromes, 26 (2001), 405-412. |
[19] |
P. Nelson and A. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences, 179 (2002), 73-94.doi: 10.1016/S0025-5564(02)00099-8. |
[20] |
M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. |
[21] |
K. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Mathematical Biosciences, Mathematical Biosciences, 235 (2012), 98-109.doi: 10.1016/j.mbs.2011.11.002. |
[22] |
A. Perelson and P. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Review, 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[23] |
A. Perelson, D. Kirschner and R. de Boer, Dynamics of HIV infection of CD4$^+$ T cells, Mathematical Biosciences, 114 (1993), 81-125.doi: 10.1016/0025-5564(93)90043-A. |
[24] |
A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.doi: 10.1126/science.271.5255.1582. |
[25] |
L. Rong, Z. Feng and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bulletin of Mathematical Biology, 69 (2007), 2027-2060.doi: 10.1007/s11538-007-9203-3. |
[26] |
L. Rong, Z. Feng and A. Perelson, Mathematical Analysis of Age-Structured HIV-1 Dynamics with Combination Antiretroviral Therapy, SIAM Journal on Applied Mathematics, 67 (2007), 731-756.doi: 10.1137/060663945. |
[27] |
G. Samanta, Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Nonlinear Analysis: Real World Applications, 12 (2011), 1163-1177.doi: 10.1016/j.nonrwa.2010.09.010. |
[28] |
H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, Journal of Mathematical Biology, 17 (1983), 179-190.doi: 10.1007/BF00305758. |
[29] |
H. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows, Proceedings of the American Mathematical Society, 127 (1999), 2395-2403.doi: 10.1090/S0002-9939-99-05034-0. |
[30] |
H. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Mathematical Biosciences, 166 (2000), 173-201.doi: 10.1016/S0025-5564(00)00018-3. |
[31] |
N. Vaidya, R. Ribeiro, C. Miller and A. Perelson, Viral dynamics during primary simian immunodeficiency virus infection: effect of time-dependent virus infectivity, Journal of Virology, 84 (2010), 4302-4310.doi: 10.1128/JVI.02284-09. |
[32] |
K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response, Chaos Solitons & Fractals, 28 (2006), 90-99.doi: 10.1016/j.chaos.2005.05.003. |
[33] |
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations, 20 (2008), 699-717.doi: 10.1007/s10884-008-9111-8. |
[34] |
X. Wang and Y. Tao, Lyapunov function and global properties of virus dynamics with CTL immune response, International Journal of Biomathematics, 1 (2008), 443-448.doi: 10.1142/S1793524508000382. |
[35] |
Y. Yang, Y. Xiao and J. Wu, Pulse HIV vaccination: Feasibility for virus eradication and optimal vaccination schedule, Bulletin of Mathematical Biology, 75 (2013), 725-751.doi: 10.1007/s11538-013-9831-8. |
[36] |
T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bulletin of Mathematical Biology, 69 (2007), 2537-2559.doi: 10.1007/s11538-007-9231-z. |