-
Previous Article
Discontinuity waves as tipping points: Applications to biological & sociological systems
- DCDS-B Home
- This Issue
-
Next Article
On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics
Mathematical modeling of phase transition and separation in fluids: A unified approach
1. | Facoltà di Ingegneria, Università e-Campus, 22060 Novedrate (CO) |
2. | DICATAM, Università di Brescia, Via Valotti, 9 - 25133 Brescia |
3. | DIBRIS, Università di Genova, Via Opera Pia 13, 16145 Genova |
References:
[1] |
H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter, Adv. Math. Sci. Appl., 6 (1996), 291-376. |
[2] |
A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions, J. Non-Equilibrium Thermodyn, 34 (2009), 219-247.
doi: 10.1515/JNETDY.2009.012. |
[3] |
A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics, AAPP Phys. Math. Nat. Sci., 91 (2013), 21 pp. |
[4] |
A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., ().
doi: 10.1007/s11012-014-9909-x. |
[5] |
A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293-316. |
[6] |
V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity, Physica D, 236 (2007), 13-21.
doi: 10.1016/j.physd.2007.07.009. |
[7] |
E. Bonetti and M. Frémond, A phase transition model with the entropy balance, Math. Methods Appl. Sci., 26 (2003), 539-556.
doi: 10.1002/mma.366. |
[8] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[9] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[10] |
B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178.
doi: 10.1007/BF01262690. |
[11] |
M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics, Phys. D, 214 (2006), 144-156.
doi: 10.1016/j.physd.2006.01.002. |
[12] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions, Internat. J. Engrg. Sci., 47 (2009), 821-839.
doi: 10.1016/j.ijengsci.2009.05.010. |
[13] |
M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565-579.
doi: 10.3934/dcdss.2011.4.565. |
[14] |
M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids, Eur. J. Mech. B Fluids, 30 (2011), 281-287.
doi: 10.1016/j.euromechflu.2010.12.003. |
[15] |
M. Frémond, Non-Smooth Thermomechanics, Springer New york, 2002.
doi: 10.1007/978-3-662-04800-9. |
[16] |
M. Frémond, Phase Changes in Mechanics, Springer New york, 2012. |
[17] |
C. Giorgi, Continuum thermodynamics and phase-field models, Milan J. Math., 77 (2009), 67-100.
doi: 10.1007/s00032-009-0101-z. |
[18] |
A. E. Green and N. Laws, On a global entropy production inequality, Quart. J. Mech. Appl. Math., 25 (1972), 1-11.
doi: 10.1093/qjmam/25.1.1. |
[19] |
K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles, in Entropy, (eds. A. Greven, G. Keller and G. Warnecke), Princeton University Press Princeton, N.J., 2003. |
[20] |
R. A. L. Jones, Soft condensed matter, Eur. J. Phys., 23 (2002), 652.
doi: 10.1088/0143-0807/23/6/703. |
[21] |
A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998), 4323-4349.
doi: 10.1103/PhysRevE.57.4323. |
[22] |
A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling, Milan J. Math., 79 (2011), 597-642.
doi: 10.1007/s00032-011-0171-6. |
[23] |
G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction, World Scientific Singapore, 1999.
doi: 10.1142/3700. |
[24] |
G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilibrium Thermodyn, 19 (1994), 217-249.
doi: 10.1515/jnet.1994.19.3.217. |
[25] |
A. Morro, A phase-field approach to non-isothermal transitions, Math. Comput. Modelling, 48 (2008), 621-633.
doi: 10.1016/j.mcm.2007.11.001. |
[26] | |
[27] |
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D, 43 (1990), 44-62.
doi: 10.1016/0167-2789(90)90015-H. |
[28] |
O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model, Phys. D, 69 (1993), 107-113.
doi: 10.1016/0167-2789(93)90183-2. |
[29] |
I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials, Rep. Prog. Phys., 71 (2008), 106501-106533.
doi: 10.1088/0034-4885/71/10/106501. |
[30] |
P. Ván, Weakly nonlocal irreversible thermodynamics, Ann. Phys. (8), 12 (2003), 146-173.
doi: 10.1002/andp.200310002. |
show all references
References:
[1] |
H. W. Alt and I. Pawlow, On the entropy principle of phase transition models with a conserved parameter, Adv. Math. Sci. Appl., 6 (1996), 291-376. |
[2] |
A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions, J. Non-Equilibrium Thermodyn, 34 (2009), 219-247.
doi: 10.1515/JNETDY.2009.012. |
[3] |
A. Berti and C. Giorgi, Phase-field modeling of transition and separation phenomena in continuum thermodynamics, AAPP Phys. Math. Nat. Sci., 91 (2013), 21 pp. |
[4] |
A. Berti and C. Giorgi, A phase-field model for quasi-incompressible solid-liquid transitions,, to appear in Meccanica., ().
doi: 10.1007/s11012-014-9909-x. |
[5] |
A. Berti, C. Giorgi and E. Vuk, Free energies and pseudo-elastic transitions for shape memory alloys, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 293-316. |
[6] |
V. Berti, M. Fabrizio and C. Giorgi, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity, Physica D, 236 (2007), 13-21.
doi: 10.1016/j.physd.2007.07.009. |
[7] |
E. Bonetti and M. Frémond, A phase transition model with the entropy balance, Math. Methods Appl. Sci., 26 (2003), 539-556.
doi: 10.1002/mma.366. |
[8] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer New York, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[9] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[10] |
B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178.
doi: 10.1007/BF01262690. |
[11] |
M. Fabrizio, C. Giorgi and A. Morro, A Thermodynamic approach to non-isotermal phase-field evolution in continuum physics, Phys. D, 214 (2006), 144-156.
doi: 10.1016/j.physd.2006.01.002. |
[12] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions, Internat. J. Engrg. Sci., 47 (2009), 821-839.
doi: 10.1016/j.ijengsci.2009.05.010. |
[13] |
M. Fabrizio, C. Giorgi and A. Morro, Isotropic-nematic phase transitions in liquid crystals, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 565-579.
doi: 10.3934/dcdss.2011.4.565. |
[14] |
M. Fabrizio, C. Giorgi and A Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids, Eur. J. Mech. B Fluids, 30 (2011), 281-287.
doi: 10.1016/j.euromechflu.2010.12.003. |
[15] |
M. Frémond, Non-Smooth Thermomechanics, Springer New york, 2002.
doi: 10.1007/978-3-662-04800-9. |
[16] |
M. Frémond, Phase Changes in Mechanics, Springer New york, 2012. |
[17] |
C. Giorgi, Continuum thermodynamics and phase-field models, Milan J. Math., 77 (2009), 67-100.
doi: 10.1007/s00032-009-0101-z. |
[18] |
A. E. Green and N. Laws, On a global entropy production inequality, Quart. J. Mech. Appl. Math., 25 (1972), 1-11.
doi: 10.1093/qjmam/25.1.1. |
[19] |
K. Hutter and Y. Wang, Phenomenological thermodynamics and entropy principles, in Entropy, (eds. A. Greven, G. Keller and G. Warnecke), Princeton University Press Princeton, N.J., 2003. |
[20] |
R. A. L. Jones, Soft condensed matter, Eur. J. Phys., 23 (2002), 652.
doi: 10.1088/0143-0807/23/6/703. |
[21] |
A. Karma and W. J. Rappel, Quantitative phase-field modelling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998), 4323-4349.
doi: 10.1103/PhysRevE.57.4323. |
[22] |
A. G. Lamorgese, D. Molin and R. Mauri, Phase field approach to multiphase flow modeling, Milan J. Math., 79 (2011), 597-642.
doi: 10.1007/s00032-011-0171-6. |
[23] |
G. A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours. An Introduction, World Scientific Singapore, 1999.
doi: 10.1142/3700. |
[24] |
G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilibrium Thermodyn, 19 (1994), 217-249.
doi: 10.1515/jnet.1994.19.3.217. |
[25] |
A. Morro, A phase-field approach to non-isothermal transitions, Math. Comput. Modelling, 48 (2008), 621-633.
doi: 10.1016/j.mcm.2007.11.001. |
[26] | |
[27] |
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D, 43 (1990), 44-62.
doi: 10.1016/0167-2789(90)90015-H. |
[28] |
O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model, Phys. D, 69 (1993), 107-113.
doi: 10.1016/0167-2789(93)90183-2. |
[29] |
I. Singer-Loginova and H. M. Singer, The phase-field technique for modeling multiphase materials, Rep. Prog. Phys., 71 (2008), 106501-106533.
doi: 10.1088/0034-4885/71/10/106501. |
[30] |
P. Ván, Weakly nonlocal irreversible thermodynamics, Ann. Phys. (8), 12 (2003), 146-173.
doi: 10.1002/andp.200310002. |
[1] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[2] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[3] |
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423 |
[4] |
Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391 |
[5] |
Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132 |
[6] |
Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149 |
[7] |
Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control and Related Fields, 2020, 10 (2) : 305-331. doi: 10.3934/mcrf.2019040 |
[8] |
Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002 |
[9] |
Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539 |
[10] |
Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693 |
[11] |
Irena PawŁow. The Cahn--Hilliard--de Gennes and generalized Penrose--Fife models for polymer phase separation. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2711-2739. doi: 10.3934/dcds.2015.35.2711 |
[12] |
Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113 |
[13] |
Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure and Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303 |
[14] |
José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429 |
[15] |
Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089 |
[16] |
Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949 |
[17] |
Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011 |
[18] |
Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 |
[19] |
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[20] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]