Citation: |
[1] |
N. I. Akhiezer, The Classical Moment Problem, Oliver & Boyd, Edinburgh, 1965. |
[2] |
C. M. Bender, S. Boettcher and P. N. Meisinger, PT-Symmetric quantum mechanics, J. Math. Phys., 40 (1999), 2201-2229.doi: 10.1063/1.532860. |
[3] |
C. M. Bender, M. V. Berry and A. Mandilara, Generalized PT symmetry and real spectra, J.Phys. A: Math. Gen., 35 (2002), L467-L471.doi: 10.1088/0305-4470/35/31/101. |
[4] |
C. M. Bender, D. C. Brody and H. F. Jones, Must a hamiltonian be hermitian?, American Journal of Physics, 71 (2003), 1095-1102.doi: 10.1119/1.1574043. |
[5] |
C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having PT symmetry, Phys. Rev. Lett., 80 (1998), 5243-5246.doi: 10.1103/PhysRevLett.80.5243. |
[6] |
P. Dorey, C. Dunning and R. Tateo, Spectral equivalences, Bethe ansatz equations and reality properties of $\mathcal{PT}$-symmetric quantum mechanics, J. Phys. A, 34 (2001), 5679-5704.doi: 10.1088/0305-4470/34/28/305. |
[7] |
P. Dorey, C. Dunning and R. Tateo, Supersymmetry and the spontaneous breakdown of $\mathcal{PT}$ symmetry, J. Phys. A, 34 (2001), L391. |
[8] |
P. Dorey, C. Dunning, A. Lishman and R. Tateo, $\mathcal{PT}$-symmetry breaking for a class of inhomogeneous complex potentials, J. Phys. A, 42 (2009), 465302.doi: 10.1088/1751-8113/42/46/465302. |
[9] |
S. Graffi, V. Grecchi and B. Simon, Borel summability: Application to the anharmonic ocillator, Phys. Lett., 32B (1970), 631-634. |
[10] |
I. W. Herbst, Dilation analyticity in constant electric field, Comm. Math. Phys., 64 (1979), 279-298.doi: 10.1007/BF01221735. |
[11] |
W. Hunziker and C. A.Pillet, Degenerate asymptotic perurbation theory, Comm. Math. Phys., 90 (1983), 219-233. |
[12] |
T. Kato, Perturbation Theory for Linear Operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976. xxi+619 pp. |
[13] |
J. J. Loeffel and A. Martin, Proprietés analytiques des niveaux de l'oscillateur anharmonique et convergence des approximants de Padé, Cargèse Lectures in Physics, Gordon and Breach, New York, 5 (1972), 415-429. |
[14] |
J. J. Loeffel, A. Martin, B. Simon and A. S.Wightman, Padé Approximants and the Anharmonic Oscillator, Phys. Lett., 30B (1969), 656-658. |
[15] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Academic Press 1978. |
[16] |
K. C. Shin, On the reality of the eigenvalues for a class of $PT$-symmetric oscillators, Comm. Math. Phys., 229 (2002), 543-564.doi: 10.1007/s00220-002-0706-3. |
[17] |
B. Simon, Coupling constant analyticity for the anharmonic oscillator, Ann. Phys. (N.Y.), 58 (1970), 76-136.doi: 10.1016/0003-4916(70)90240-X. |
[18] |
Y. Sibuya, Global Theory of Second Order Linear Differential Equations with Polynomial Coefficients, North Holland, Amsterdam 1975. |
[19] |
J. Sjöstrand, Private Communication. |
[20] |
Special Issue: $\mathcal{PT}$-Symmetric Quantum Mechanics,, J. Phys. A, 39 (2006).
|
[21] |
Special Issue: Papers Dedicated to the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics,, J. Phys. A: Math. Theor., 21 (2008).
|
[22] |
Special Issue: Non-Hermitian Hamiltonians in Quantum Physics - Part I,, PRAMANA Journal of Physics, 73 (2009).
|