September  2014, 19(7): 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

On a generalized Cahn-Hilliard equation with biological applications

1. 

Université de La Rochelle, Laboratoire Mathématiques, Image et Applications, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex

3. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  March 2013 Revised  May 2013 Published  August 2014

In this paper, we are interested in the study of the asymptotic behavior of a generalization of the Cahn-Hilliard equation with a proliferation term and endowed with Neumann boundary conditions. Such a model has, in particular, applications in biology. We show that either the average of the local density of cells is bounded, in which case we have a global in time solution, or the solution blows up in finite time. We further prove that the relevant, from a biological point of view, solutions converge to $1$ as time goes to infinity. We finally give some numerical simulations which confirm the theoretical results.
Citation: Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Amsterdam, 1992.

[2]

J. W. Cahn, On spinodal decomposition, Acta. Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1.

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[4]

V. Chalupeckí, Numerical studies of Cahn-Hilliard equations and applications in image processing, in Proceedings of Czech-Japanese Seminar in Applied Mathematics, 2004, Czech Technical University in Prague.

[5]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. doi: 10.1007/s00032-011-0165-4.

[6]

L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. Systems, 27 (2010), 1511-1533. doi: 10.3934/dcds.2010.27.1511.

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in a population, J. Math. Biol., 12 (1981), 237-249. doi: 10.1007/BF00276132.

[8]

I. C. Dolcetta, S. F. Vita and R. March, Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces Free Bound., 4 (2002), 325-343. doi: 10.4171/IFB/64.

[9]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems, (ed. J. F. Rodrigues), International Series of Numerical Mathematics, 88, Birkhäuser, Basel, 1989.

[10]

C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), 575-590. doi: 10.1007/BF01396363.

[11]

, FreeFem++ is freely available at http://www.freefem.org/ff++.

[12]

M. Grasselli and M. Pierre, A splitting method for the Cahn-Hilliard equation with inertial term, Math. Models Methods Appl. Sci., 20 (2010), 1363-1390. doi: 10.1142/S0218202510004635.

[13]

S. Injrou and M. Pierre, Stable discretizations of the Cahn-Hilliard-Gurtin equations, Discrete Cont. Dyn. Systems, 22 (2008), 1065-1080. doi: 10.3934/dcds.2008.22.1065.

[14]

E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129. doi: 10.1103/PhysRevE.77.051129.

[15]

I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021. doi: 10.1103/PhysRevE.74.031902.

[16]

R. V. Kohn and F. Otto, Upper bounds for coarsening rates, Commun. Math. Phys., 229 (2002), 375-395. doi: 10.1007/s00220-002-0693-4.

[17]

J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys., 65 (1975), 53-86. doi: 10.1016/0003-4916(71)90162-X.

[18]

S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength estimate, Commun. Math. Phys., 195 (1998), 435-464. doi: 10.1007/s002200050397.

[19]

S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), 187-219. doi: 10.1007/s002050050196.

[20]

A. Miranville, Asymptotic behavior of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal., 92 (2013), 1308-1321. doi: 10.1080/00036811.2012.671301.

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, 4, (eds. C. M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008, 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[22]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Commun. Partial Diff. Eqns., 14 (1989), 245-297. doi: 10.1080/03605308908820597.

[23]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.

[24]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, 4, (eds. C. M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008, 201-228. doi: 10.1016/S1874-5717(08)00004-2.

[25]

A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931.

[26]

M. Pierre, Habilitation Thesis, Université de Poitiers, 1997.

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[28]

U. Thiele and E. Knobloch, Thin liquid films on a slightly inclined heated plate, Phys. D, 190 (2004), 213-248. doi: 10.1016/j.physd.2003.09.048.

[29]

S. Tremaine, On the origin of irregular structure in Saturn's rings, Astron. J., 125 (2003), 894-901. doi: 10.1086/345963.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Amsterdam, 1992.

[2]

J. W. Cahn, On spinodal decomposition, Acta. Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1.

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102.

[4]

V. Chalupeckí, Numerical studies of Cahn-Hilliard equations and applications in image processing, in Proceedings of Czech-Japanese Seminar in Applied Mathematics, 2004, Czech Technical University in Prague.

[5]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596. doi: 10.1007/s00032-011-0165-4.

[6]

L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Cont. Dyn. Systems, 27 (2010), 1511-1533. doi: 10.3934/dcds.2010.27.1511.

[7]

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in a population, J. Math. Biol., 12 (1981), 237-249. doi: 10.1007/BF00276132.

[8]

I. C. Dolcetta, S. F. Vita and R. March, Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces Free Bound., 4 (2002), 325-343. doi: 10.4171/IFB/64.

[9]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems, (ed. J. F. Rodrigues), International Series of Numerical Mathematics, 88, Birkhäuser, Basel, 1989.

[10]

C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), 575-590. doi: 10.1007/BF01396363.

[11]

, FreeFem++ is freely available at http://www.freefem.org/ff++.

[12]

M. Grasselli and M. Pierre, A splitting method for the Cahn-Hilliard equation with inertial term, Math. Models Methods Appl. Sci., 20 (2010), 1363-1390. doi: 10.1142/S0218202510004635.

[13]

S. Injrou and M. Pierre, Stable discretizations of the Cahn-Hilliard-Gurtin equations, Discrete Cont. Dyn. Systems, 22 (2008), 1065-1080. doi: 10.3934/dcds.2008.22.1065.

[14]

E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129. doi: 10.1103/PhysRevE.77.051129.

[15]

I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms, Phys. Rev. E, 74 (2006), 0319021. doi: 10.1103/PhysRevE.74.031902.

[16]

R. V. Kohn and F. Otto, Upper bounds for coarsening rates, Commun. Math. Phys., 229 (2002), 375-395. doi: 10.1007/s00220-002-0693-4.

[17]

J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys., 65 (1975), 53-86. doi: 10.1016/0003-4916(71)90162-X.

[18]

S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength estimate, Commun. Math. Phys., 195 (1998), 435-464. doi: 10.1007/s002200050397.

[19]

S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), 187-219. doi: 10.1007/s002050050196.

[20]

A. Miranville, Asymptotic behavior of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal., 92 (2013), 1308-1321. doi: 10.1080/00036811.2012.671301.

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, 4, (eds. C. M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008, 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[22]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Commun. Partial Diff. Eqns., 14 (1989), 245-297. doi: 10.1080/03605308908820597.

[23]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8 (1998), 965-985.

[24]

A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, 4, (eds. C. M. Dafermos and M. Pokorny), Elsevier, Amsterdam, 2008, 201-228. doi: 10.1016/S1874-5717(08)00004-2.

[25]

A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931.

[26]

M. Pierre, Habilitation Thesis, Université de Poitiers, 1997.

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[28]

U. Thiele and E. Knobloch, Thin liquid films on a slightly inclined heated plate, Phys. D, 190 (2004), 213-248. doi: 10.1016/j.physd.2003.09.048.

[29]

S. Tremaine, On the origin of irregular structure in Saturn's rings, Astron. J., 125 (2003), 894-901. doi: 10.1086/345963.

[1]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[2]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[3]

Matthieu Brachet, Philippe Parnaudeau, Morgan Pierre. Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1987-2031. doi: 10.3934/dcdss.2022110

[4]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[5]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[6]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[7]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations and Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[8]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[9]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[10]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[11]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[12]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[13]

Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

[14]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[15]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[16]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[17]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[18]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[19]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[20]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (214)
  • HTML views (0)
  • Cited by (19)

[Back to Top]