Advanced Search
Article Contents
Article Contents

Inverse problems for singular differential-operator equations with higher order polar singularities

Abstract Related Papers Cited by
  • In this paper we study an inverse problem for strongly degenerate differential equations in Banach spaces. Projection method on suitable subspaces will be used to solve the given problem. A number of concrete applications to ordinary and partial differential equations is described.
    Mathematics Subject Classification: Primary: 34G10; Secondary: 34A55.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint.


    M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.doi: 10.1007/s10957-006-9083-y.


    R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111-130.doi: 10.1007/978-3-0348-0075-4_7.


    G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003.doi: 10.1201/9780203911433.


    A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations, Tsukuba J. Math., 35 (2011), 259-323.


    A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type, Applicable Analysis, 91 (2012), 1511-1527.doi: 10.1080/00036811.2011.630665.


    A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc. New York, 1999.


    F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1974.


    A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.


    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978.


    L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations, (rus.)- Dnepropetrovsk: System Technology, 2006.


    K. Yosida, Functional Analysis, $6^{th}$ ed, Springer Verlag, Berlin-Heidelberg, New York, 1980.


    S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall, Boca Raton, USA, 2000.

  • 加载中

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint