Citation: |
[1] |
M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint. |
[2] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.doi: 10.1007/s10957-006-9083-y. |
[3] |
R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111-130.doi: 10.1007/978-3-0348-0075-4_7. |
[4] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003.doi: 10.1201/9780203911433. |
[5] |
A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations, Tsukuba J. Math., 35 (2011), 259-323. |
[6] |
A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type, Applicable Analysis, 91 (2012), 1511-1527.doi: 10.1080/00036811.2011.630665. |
[7] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc. New York, 1999. |
[8] |
F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1974. |
[9] |
A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958. |
[10] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978. |
[11] |
L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations, (rus.)- Dnepropetrovsk: System Technology, 2006. |
[12] |
K. Yosida, Functional Analysis, $6^{th}$ ed, Springer Verlag, Berlin-Heidelberg, New York, 1980. |
[13] |
S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall, Boca Raton, USA, 2000. |