\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inverse problems for singular differential-operator equations with higher order polar singularities

Abstract Related Papers Cited by
  • In this paper we study an inverse problem for strongly degenerate differential equations in Banach spaces. Projection method on suitable subspaces will be used to solve the given problem. A number of concrete applications to ordinary and partial differential equations is described.
    Mathematics Subject Classification: Primary: 34G10; Secondary: 34A55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations, Preprint.

    [2]

    M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130 (2006), 41-60.doi: 10.1007/s10957-006-9083-y.

    [3]

    R. Cross, A. Favini and Y. Yakubov, Perturbation results for multivalued linear operators, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 111-130.doi: 10.1007/978-3-0348-0075-4_7.

    [4]

    G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable With Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, 2003.doi: 10.1201/9780203911433.

    [5]

    A. Favaron and A. Favini, Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations, Tsukuba J. Math., 35 (2011), 259-323.

    [6]

    A. Faviniand and G. Marinoschi, Identification for degenerate problems of hyperbolic type, Applicable Analysis, 91 (2012), 1511-1527.doi: 10.1080/00036811.2011.630665.

    [7]

    A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker. Inc. New York, 1999.

    [8]

    F. Kappel and H. W. Knobloch, Gewöhnliche Differentialgleichungen, B. G. Teubner, Stuttgart, 1974.

    [9]

    A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.

    [10]

    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amesterdam, 1978.

    [11]

    L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations, (rus.)- Dnepropetrovsk: System Technology, 2006.

    [12]

    K. Yosida, Functional Analysis, $6^{th}$ ed, Springer Verlag, Berlin-Heidelberg, New York, 1980.

    [13]

    S. Yakubov and Y. Yakubov, Differential-operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall, Boca Raton, USA, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return