September  2014, 19(7): 2207-2225. doi: 10.3934/dcdsb.2014.19.2207

Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model

1. 

Civil Infrastructure and Environmental Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, 127788, United Arab Emirates

2. 

Department of Mechanical Engineering, University of Houston, Houston, Texas, TX77204-4006, United States

3. 

Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States

4. 

Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology, Okinawal, 904-0495, Japan

Received  April 2013 Revised  January 2014 Published  August 2014

We study the effect of the length scales $\alpha$ and $\beta$ on the performance of the Navier--Stokes-$\alpha\beta$ equations for numerical simulations of turbulence over coarse discretizations. To this end, we rely on the strained spiral vortex model and take advantage of the dimensional reduction allowed by that model. In particular, the three-dimensional energy spectrum is reformulated so that it can be calculated from solutions of the two-dimensional unstrained Navier--Stokes-$\alpha\beta$ equations. A similarity theory for the spiral vortex model shows that the Navier--Stokes-$\alpha\beta$ model is better equipped than the Navier--Stokes-$\alpha$ model to capture smaller-scale behavior. Numerical experiments performed using a pseudo-spectral discretization along with the second-order Adams--Bashforth time-stepping algorithm yield results indicating that the fidelity of the energy spectrum in both the inertial and dissipation ranges is significantly improved for $\beta<\alpha$.
Citation: Tae-Yeon Kim, Xuemei Chen, John E. Dolbow, Eliot Fried. Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2207-2225. doi: 10.3934/dcdsb.2014.19.2207
References:
[1]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341. doi: 10.1103/PhysRevLett.81.5338.

[2]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Physica D, 133 (1999), 49-65. doi: 10.1016/S0167-2789(99)00098-6.

[3]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343-2353. doi: 10.1063/1.870096.

[4]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173-4176.

[5]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[6]

S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model, Physica D, 133 (1999), 66-83. doi: 10.1016/S0167-2789(99)00099-8.

[7]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dyn. Diff. Eq., 14 (2002), 1-35. doi: 10.1023/A:1012984210582.

[8]

E. Fried and M. E. Gurtin, Turbulence kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes-$\alpha$ theory, Phys. Rev. E, 75 (2007), 056306, 10pp. doi: 10.1103/PhysRevE.75.056306.

[9]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid ow at small length scales, Arch. Rational Mech. Anal., 182 (2006), 513-554. doi: 10.1007/s00205-006-0015-7.

[10]

T.-Y. Kim, M. Cassiani, J. D. Albertson, J. E. Dolbow, E. Fried and M. E. Gurtin, Impact of the inherent separation of scales in the Navier-Stokes-$\alpha\beta$ equations, Phys. Rev. E., 79 (2009), 045307, 4pp. doi: 10.1103/PhysRevE.79.045307.

[11]

T.-Y. Kim, M. Neda, L. G. Rebholz and E. Fried, A numerical study of the Navier-Stokes-$\alpha\beta$ model, Comp. Meth. Appl. Mech. Eng., 200 (2011), 2891-2902. doi: 10.1016/j.cma.2011.05.011.

[12]

T. S. Lundgren, Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25 (1982), 2193-2203. doi: 10.1063/1.863957.

[13]

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30 (1941), 301-305.

[14]

T. S. Lundgren, A small-scale turbulence model, Phys. Fluids A, 5 (1993), 1472-1483. doi: 10.1063/1.858585.

[15]

D. I. Pullin and P. G. Saffman, On the Lungren-Townsend model of a turbulent fine scales, Phys. Fluids A, 5 (1993), 126-145. doi: 10.1063/1.858798.

[16]

D. I. Pullin, J. D. Buntine and P. G. Saffman, On the spectrum of a stretched spiral vortex, Phys. Fluids, 6 (1994), 3010-3027. doi: 10.1063/1.868127.

[17]

X. Chen and E. Fried, The influence of the dispersive and dissipative scales $\alpha$ and $\beta$ on the energy spectrum of the Navier-Stokes-$\alpha\beta$ model for turbulent flow, Phys. Rev. E, 78 (2008), 046317, 10pp. doi: 10.1103/PhysRevE.78.046317.

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.

show all references

References:
[1]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341. doi: 10.1103/PhysRevLett.81.5338.

[2]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Physica D, 133 (1999), 49-65. doi: 10.1016/S0167-2789(99)00098-6.

[3]

S. Chen, C. Foias, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343-2353. doi: 10.1063/1.870096.

[4]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173-4176.

[5]

D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[6]

S. Chen, D. D. Holm, L. G. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model, Physica D, 133 (1999), 66-83. doi: 10.1016/S0167-2789(99)00099-8.

[7]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dyn. Diff. Eq., 14 (2002), 1-35. doi: 10.1023/A:1012984210582.

[8]

E. Fried and M. E. Gurtin, Turbulence kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes-$\alpha$ theory, Phys. Rev. E, 75 (2007), 056306, 10pp. doi: 10.1103/PhysRevE.75.056306.

[9]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid ow at small length scales, Arch. Rational Mech. Anal., 182 (2006), 513-554. doi: 10.1007/s00205-006-0015-7.

[10]

T.-Y. Kim, M. Cassiani, J. D. Albertson, J. E. Dolbow, E. Fried and M. E. Gurtin, Impact of the inherent separation of scales in the Navier-Stokes-$\alpha\beta$ equations, Phys. Rev. E., 79 (2009), 045307, 4pp. doi: 10.1103/PhysRevE.79.045307.

[11]

T.-Y. Kim, M. Neda, L. G. Rebholz and E. Fried, A numerical study of the Navier-Stokes-$\alpha\beta$ model, Comp. Meth. Appl. Mech. Eng., 200 (2011), 2891-2902. doi: 10.1016/j.cma.2011.05.011.

[12]

T. S. Lundgren, Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25 (1982), 2193-2203. doi: 10.1063/1.863957.

[13]

A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30 (1941), 301-305.

[14]

T. S. Lundgren, A small-scale turbulence model, Phys. Fluids A, 5 (1993), 1472-1483. doi: 10.1063/1.858585.

[15]

D. I. Pullin and P. G. Saffman, On the Lungren-Townsend model of a turbulent fine scales, Phys. Fluids A, 5 (1993), 126-145. doi: 10.1063/1.858798.

[16]

D. I. Pullin, J. D. Buntine and P. G. Saffman, On the spectrum of a stretched spiral vortex, Phys. Fluids, 6 (1994), 3010-3027. doi: 10.1063/1.868127.

[17]

X. Chen and E. Fried, The influence of the dispersive and dissipative scales $\alpha$ and $\beta$ on the energy spectrum of the Navier-Stokes-$\alpha\beta$ model for turbulent flow, Phys. Rev. E, 78 (2008), 046317, 10pp. doi: 10.1103/PhysRevE.78.046317.

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.

[1]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

[2]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[3]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[4]

Emmanuel Schenck. Exponential gaps in the length spectrum. Journal of Modern Dynamics, 2020, 16: 207-223. doi: 10.3934/jmd.2020007

[5]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79

[6]

Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036

[7]

John V. Shebalin. Theory and simulation of real and ideal magnetohydrodynamic turbulence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 153-174. doi: 10.3934/dcdsb.2005.5.153

[8]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[9]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 103-124. doi: 10.3934/dcdsb.2005.5.103

[10]

Paul Fife, Joseph Klewicki, Tie Wei. Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 781-807. doi: 10.3934/dcds.2009.24.781

[11]

François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163

[12]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[13]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[14]

Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833

[15]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[16]

Antoine Gloria Cermics. A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1 (1) : 109-141. doi: 10.3934/nhm.2006.1.109

[17]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[18]

Andriy Sokolov, Robert Strehl, Stefan Turek. Numerical simulation of chemotaxis models on stationary surfaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2689-2704. doi: 10.3934/dcdsb.2013.18.2689

[19]

Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018

[20]

Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (0)

[Back to Top]