-
Previous Article
On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$
- DCDS-B Home
- This Issue
-
Next Article
Analysis and simulation for an isotropic phase-field model describing grain growth
Identification problems related to cylindrical dielectrics **in presence of polarization**
1. | Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano |
  For this problem, under some additional measurement, we prove an existence and uniqueness result.
References:
[1] |
H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization, Nonlinear Anal. Real World Appl., 4 (2003), 483-501.
doi: 10.1016/S1468-1218(02)00074-3. |
[2] |
H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters, Appl. Math. Lett., 18 (2005), 423-430.
doi: 10.1016/j.aml.2004.02.008. |
[3] |
M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci., 12 (1990), 365-368.
doi: 10.1002/mma.1670120406. |
[4] |
V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations, Lecture notes in Mathematics vol. 749, Springer Verlag, Berlin 1979. |
[5] |
F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization, J. Differential Equations, 203 (2004), 232-254.
doi: 10.1016/j.jde.2004.05.005. |
[6] |
F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization, J. Math. Anal. Appl., 288 (2003), 411-423.
doi: 10.1016/j.jmaa.2003.08.052. |
[7] |
A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions, J. Inverse Ill Posed Probl., 4 (1996), 115-143.
doi: 10.1515/jiip.1996.4.2.115. |
[8] |
A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77-86 (in Russian); English translation in Journal of Applied and Industrial Mathematics, 6 (2012), 460-468.
doi: 10.1134/S1990478912040072. |
[9] |
V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation, Doklady Akademii Nauk, 446 (2012), 18-20; English transl. in Doklady Mathematics, 86 (2012), 608-610.
doi: 10.1134/S1064562412050067. |
[10] |
D. Sheen, A generalized Green's theorem, Appl. Math. Lett., 5 (1992), 95-98.
doi: 10.1016/0893-9659(92)90096-R. |
show all references
References:
[1] |
H. T. Banks and G. A. Pinter, Maxwell-systems with nonlinear polarization, Nonlinear Anal. Real World Appl., 4 (2003), 483-501.
doi: 10.1016/S1468-1218(02)00074-3. |
[2] |
H. T. Banks and N. L. Gibson, Well-posedness in Maxwell systems with distributions of polarization relaxation parameters, Appl. Math. Lett., 18 (2005), 423-430.
doi: 10.1016/j.aml.2004.02.008. |
[3] |
M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci., 12 (1990), 365-368.
doi: 10.1002/mma.1670120406. |
[4] |
V. Girault and P. A. Raviart, Finite Element Approximation Of The Navier-Stokes Equations, Lecture notes in Mathematics vol. 749, Springer Verlag, Berlin 1979. |
[5] |
F. Jochmann, Energy decay of solutions to Maxwell's equations with conductivity and polarization, J. Differential Equations, 203 (2004), 232-254.
doi: 10.1016/j.jde.2004.05.005. |
[6] |
F. Jochmann, Exponential decay of solutions of Maxwell's equations coupled with a first-order ordinary differential equation for the polarization, J. Math. Anal. Appl., 288 (2003), 411-423.
doi: 10.1016/j.jmaa.2003.08.052. |
[7] |
A. Lorenzi and V. I. Priimenko, Identification problems related to electro-magneto-elastic interactions, J. Inverse Ill Posed Probl., 4 (1996), 115-143.
doi: 10.1515/jiip.1996.4.2.115. |
[8] |
A. L. Nazarov and V. G. Romanov, A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations, Sibirskii Zhurnal Industrial'noi Mathematiki, 15 (2012), 77-86 (in Russian); English translation in Journal of Applied and Industrial Mathematics, 6 (2012), 460-468.
doi: 10.1134/S1990478912040072. |
[9] |
V. G. Romanov, Problem of kernel recovering for the viscoelasticity equation, Doklady Akademii Nauk, 446 (2012), 18-20; English transl. in Doklady Mathematics, 86 (2012), 608-610.
doi: 10.1134/S1064562412050067. |
[10] |
D. Sheen, A generalized Green's theorem, Appl. Math. Lett., 5 (1992), 95-98.
doi: 10.1016/0893-9659(92)90096-R. |
[1] |
Paulo Cesar Carrião, Patrícia L. Cunha, Olímpio Hiroshi Miyagaki. Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Communications on Pure and Applied Analysis, 2011, 10 (2) : 709-718. doi: 10.3934/cpaa.2011.10.709 |
[2] |
Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663 |
[3] |
G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. |
[4] |
Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428 |
[5] |
Nguyen Thi Van Anh, Bui Thi Hai Yen. Source identification problems for abstract semilinear nonlocal differential equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022030 |
[6] |
Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151 |
[7] |
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213 |
[8] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[9] |
Jérémi Dardé, Sylvain Ervedoza. Backward uniqueness results for some parabolic equations in an infinite rod. Mathematical Control and Related Fields, 2019, 9 (4) : 673-696. doi: 10.3934/mcrf.2019046 |
[10] |
Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure and Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163 |
[11] |
Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893 |
[12] |
Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867 |
[13] |
Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023 |
[14] |
Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039 |
[15] |
Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050 |
[16] |
Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513 |
[17] |
Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057 |
[18] |
Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179 |
[19] |
Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021269 |
[20] |
Monica Lazzo. Existence and multiplicity results for a class of nonlinear elliptic problems in $\mathbb(R)^N$. Conference Publications, 2003, 2003 (Special) : 526-535. doi: 10.3934/proc.2003.2003.526 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]