September  2014, 19(7): 2313-2333. doi: 10.3934/dcdsb.2014.19.2313

Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8

2. 

Università degli Studi di Roma "Tor Vergata", Dipartimento di Ingegneria Civile e Ingegneria Informatica, Via Politecnico 1, 00133 Roma, Italy

Received  March 2013 Revised  May 2013 Published  August 2014

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized ``gas'' is outlined, too.
Citation: Tomáš Roubíček, Giuseppe Tomassetti. Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2313-2333. doi: 10.3934/dcdsb.2014.19.2313
References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.

[2]

E. Bonetti, P. Colli and P. Laurencot, Global existence for a hydrogen storage model with full energy balance, Nonlinear Analysis: Theory, Meth. & Appl., 75 (2012), 3558-3573, URL http://www.sciencedirect.com/science/article/pii/S0362546X120. 0020X. doi: 10.1016/j.na.2012.01.015.

[3]

E. Bonetti, M. Fremond and C. Lexcellent, Hydrogen storage: Modeling and analytical results, Applied Mathematics and Optimization, 55 (2007), 31-59. doi: 10.1007/s00245-006-0862-5.

[4]

R. Bowen, Continuum Physics, vol. 3, Acad. Press, New York, 1976.

[5]

E. Chiodaroli, A dissipative model for hydrogen storage: Existence and regularity results, Mathematical Methods in the Applied Sciences, 34 (2011), 642-669. doi: 10.1002/mma.1390.

[6]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178. doi: 10.1007/BF01262690.

[7]

S. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Publ., New York, 1984.

[8]

J. Divisek, J. Fuhrmann, K. Gärtner and R. Jung, Performance modelling of a direct methanol fuel cell, J. Electrochem. Soc., 150 (2003), A811-A825. doi: 10.1149/1.1572150.

[9]

W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs including surface tension and bulk stresses, Proc. Royal Soc. A, 464 (2008), 2693-2720. doi: 10.1098/rspa.2007.0205.

[10]

W. Dreyer, C. Guhlke and R. Huth, Hysteresis in the context of hydrogen storage and lithium-ion batteries, Preprint WIAS No. 1410, Berlin, 2009.

[11]

P. Edwards, V. Kuznetsov, W. David and N. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, 36 (2008), 4356-4362, URL http://www.sciencedirect.com/science/article/pii/S0301421508004503. doi: 10.1016/j.enpol.2008.09.036.

[12]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369. doi: 10.1002/mma.1089.

[13]

J. Fuhrmann, Mathematical and numerical modeling of flow, transport and reactions in porous structures of electrochemical devices, Simulation of flow in porous media, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 12 (2013), 139-164.

[14]

D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, 4th edition, Springer, New York, 2010. doi: 10.1007/978-90-481-3074-0.

[15]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific, Hackensack, NJ, 2008. doi: 10.1142/9789812779144.

[16]

A. Kulikovsky, Analytical Modelling of Fuel Cells, Elsevier, Amsterdam, 2010.

[17]

M. Latroche, Structural and thermodynamic properties of metallic hydrides used for energy storage, J. Physics & Chemistry Solids, 65 (2004), 517-522, URL http://www.sciencedirect.com/science/article/pii/S0022369703004402. doi: 10.1016/j.jpcs.2003.08.037.

[18]

G. Libowitz, Metallic hydrides; fundamental properties and applications, J. Physics & Chemistry Solids, 55 (1994), 1461-1470, URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0028741292 &partnerID=40&md5=d79dac704fa4eb54e7461cf24ad03a23. doi: 10.1016/0022-3697(94)90571-1.

[19]

F. Luterotti, G. Schimperna and U. Stefanelli, Global solution to a phase field model with irreversible and constrained phase evolution, Quart. Appl. Math., 60 (2002), 301-316.

[20]

I. Müller, Thermodynamics, Pitman, 1985.

[21]

P. Podio-Guidugli, T. Roubíček and G. Tomassetti, A thermodynamically consistent theory of the ferro/paramagnetic transition, Arch. Ration. Mech. Anal., 198 (2010), 1057-1094. doi: 10.1007/s00205-010-0349-z.

[22]

K. Promislow and B. Wetton, PEM fuel cells: a mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409. doi: 10.1137/080720802.

[23]

T. Roubíček, Incompressible ionized non-Newtonean fluid mixtures, SIAM J. Math. Anal., 39 (2007), 863-890. doi: 10.1137/060667335.

[24]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, 2nd edition, Birkhäuser, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[25]

T. Roubíček and G. Tomassetti, Ferromagnets with eddy currents and pinning effects: Their thermodynamics and analysis, Math. Models Methods in Appl. Sciences, 21 (2011), 29-55. doi: 10.1142/S0218202511004976.

[26]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current, Z. Angew. Math. Mech., 61 (2010), 1-20. doi: 10.1007/s00033-009-0007-1.

[27]

T. Roubíček and G. Tomassetti, Phase transformation in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43. doi: 10.1007/s00205-013-0648-2.

[28]

W. van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell System Tech. J., 29 (1950), 560-607.

show all references

References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.

[2]

E. Bonetti, P. Colli and P. Laurencot, Global existence for a hydrogen storage model with full energy balance, Nonlinear Analysis: Theory, Meth. & Appl., 75 (2012), 3558-3573, URL http://www.sciencedirect.com/science/article/pii/S0362546X120. 0020X. doi: 10.1016/j.na.2012.01.015.

[3]

E. Bonetti, M. Fremond and C. Lexcellent, Hydrogen storage: Modeling and analytical results, Applied Mathematics and Optimization, 55 (2007), 31-59. doi: 10.1007/s00245-006-0862-5.

[4]

R. Bowen, Continuum Physics, vol. 3, Acad. Press, New York, 1976.

[5]

E. Chiodaroli, A dissipative model for hydrogen storage: Existence and regularity results, Mathematical Methods in the Applied Sciences, 34 (2011), 642-669. doi: 10.1002/mma.1390.

[6]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178. doi: 10.1007/BF01262690.

[7]

S. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Publ., New York, 1984.

[8]

J. Divisek, J. Fuhrmann, K. Gärtner and R. Jung, Performance modelling of a direct methanol fuel cell, J. Electrochem. Soc., 150 (2003), A811-A825. doi: 10.1149/1.1572150.

[9]

W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs including surface tension and bulk stresses, Proc. Royal Soc. A, 464 (2008), 2693-2720. doi: 10.1098/rspa.2007.0205.

[10]

W. Dreyer, C. Guhlke and R. Huth, Hysteresis in the context of hydrogen storage and lithium-ion batteries, Preprint WIAS No. 1410, Berlin, 2009.

[11]

P. Edwards, V. Kuznetsov, W. David and N. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, 36 (2008), 4356-4362, URL http://www.sciencedirect.com/science/article/pii/S0301421508004503. doi: 10.1016/j.enpol.2008.09.036.

[12]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369. doi: 10.1002/mma.1089.

[13]

J. Fuhrmann, Mathematical and numerical modeling of flow, transport and reactions in porous structures of electrochemical devices, Simulation of flow in porous media, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 12 (2013), 139-164.

[14]

D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, 4th edition, Springer, New York, 2010. doi: 10.1007/978-90-481-3074-0.

[15]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific, Hackensack, NJ, 2008. doi: 10.1142/9789812779144.

[16]

A. Kulikovsky, Analytical Modelling of Fuel Cells, Elsevier, Amsterdam, 2010.

[17]

M. Latroche, Structural and thermodynamic properties of metallic hydrides used for energy storage, J. Physics & Chemistry Solids, 65 (2004), 517-522, URL http://www.sciencedirect.com/science/article/pii/S0022369703004402. doi: 10.1016/j.jpcs.2003.08.037.

[18]

G. Libowitz, Metallic hydrides; fundamental properties and applications, J. Physics & Chemistry Solids, 55 (1994), 1461-1470, URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0028741292 &partnerID=40&md5=d79dac704fa4eb54e7461cf24ad03a23. doi: 10.1016/0022-3697(94)90571-1.

[19]

F. Luterotti, G. Schimperna and U. Stefanelli, Global solution to a phase field model with irreversible and constrained phase evolution, Quart. Appl. Math., 60 (2002), 301-316.

[20]

I. Müller, Thermodynamics, Pitman, 1985.

[21]

P. Podio-Guidugli, T. Roubíček and G. Tomassetti, A thermodynamically consistent theory of the ferro/paramagnetic transition, Arch. Ration. Mech. Anal., 198 (2010), 1057-1094. doi: 10.1007/s00205-010-0349-z.

[22]

K. Promislow and B. Wetton, PEM fuel cells: a mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409. doi: 10.1137/080720802.

[23]

T. Roubíček, Incompressible ionized non-Newtonean fluid mixtures, SIAM J. Math. Anal., 39 (2007), 863-890. doi: 10.1137/060667335.

[24]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, 2nd edition, Birkhäuser, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[25]

T. Roubíček and G. Tomassetti, Ferromagnets with eddy currents and pinning effects: Their thermodynamics and analysis, Math. Models Methods in Appl. Sciences, 21 (2011), 29-55. doi: 10.1142/S0218202511004976.

[26]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current, Z. Angew. Math. Mech., 61 (2010), 1-20. doi: 10.1007/s00033-009-0007-1.

[27]

T. Roubíček and G. Tomassetti, Phase transformation in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43. doi: 10.1007/s00205-013-0648-2.

[28]

W. van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell System Tech. J., 29 (1950), 560-607.

[1]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[2]

Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110

[3]

Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura. Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences & Engineering, 2010, 7 (2) : 237-258. doi: 10.3934/mbe.2010.7.237

[4]

Miroslav Bulíček, Victoria Patel, Yasemin Şengül, Endre Süli. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1931-1960. doi: 10.3934/cpaa.2021053

[5]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[6]

Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14 (3) : 445-469. doi: 10.3934/nhm.2019018

[7]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[8]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[9]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[10]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[11]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[12]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[13]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

[14]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[15]

Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic and Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537

[16]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239

[17]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure and Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[18]

Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure and Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031

[19]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[20]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]