October  2014, 19(8): 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

Fractional variational principle of Herglotz

1. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro

2. 

Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland

Received  April 2014 Revised  April 2014 Published  August 2014

The aim of this paper is to bring together two approaches to non-conservative systems -- the generalized variational principle of Herglotz and the fractional calculus of variations. Namely, we consider functionals whose extrema are sought, by differential equations that involve Caputo fractional derivatives. The Euler--Lagrange equations are obtained for the fractional variational problems of Herglotz-type and the transversality conditions are derived. The fractional Noether-type theorem for conservative and non-conservative physical systems is proved.
Citation: Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367
References:
[1]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines and Y. S. Ilyashenko, Ordinary Differential Equations and Smooth Dynamical Systems, Encyclopaedia of Mathematical Sciences, 1, Springer, Berlin, 1988.

[2]

T. M. Atanacković, S. Konjik and S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A, 41 (2008), 095201, 12 pp. doi: 10.1088/1751-8113/41/9/095201.

[3]

T. M. Atanacković and B. Stanković, On a numerical scheme for solving differential equations of fractional order, Mech. Res. Comm., 35 (2008), 429-438. doi: 10.1016/j.mechrescom.2008.05.003.

[4]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noethers theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.

[5]

N. J. Ford and M. L. Morgado, Fractional boundary value problems: Analysis and numerical methods, Fract. Calc. Appl. Anal., 14 (2011), 554-567. doi: 10.2478/s13540-011-0034-4.

[6]

N. J. Ford and M. L. Morgado, Distributed order equations as boundary value problems, Comput. Math. Appl., 64 (2012), 2973-2981. doi: 10.1016/j.camwa.2012.01.053.

[7]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.

[8]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.

[9]

B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927. doi: 10.1063/1.1597419.

[10]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, MA, 1951.

[11]

R. B. Guenther, C. M. Guenther and J. A. Gottsch, The Herglotz Lectures on Contact Trans- formations and Hamiltonian Systems, Lecture Notes in Nonlinear Analysis, 1, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń, 1996.

[12]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.

[14]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czenstochowa University of Technology, Czestochowa, 2009.

[15]

C. Lánczos, The Variational Principles of Mechanics, Fourth edition, Mathematical Expositions, No. 4, Univ. Toronto Press, Toronto, ON, 1970.

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations, Imp. Coll. Press, London, 2012. doi: 10.1142/p871.

[17]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett., 25 (2012), 1941-1946. doi: 10.1016/j.aml.2012.03.006.

[18]

V. J. Menon, N. Chanana and Y. Singh, A fresh look at the BCK frictional lagrangian, Prog. Theor. Phys., 98 (1997), 321-329. doi: 10.1143/PTP.98.321.

[19]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives, Comput. Math. Appl., 64 (2012), 3090-3100. doi: 10.1016/j.camwa.2012.01.068.

[21]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899. doi: 10.1103/PhysRevE.53.1890.

[22]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.

[23]

S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam Journal of Mathematics, (2013), 1-11. doi: 10.1007/s10013-013-0048-9.

show all references

References:
[1]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines and Y. S. Ilyashenko, Ordinary Differential Equations and Smooth Dynamical Systems, Encyclopaedia of Mathematical Sciences, 1, Springer, Berlin, 1988.

[2]

T. M. Atanacković, S. Konjik and S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A, 41 (2008), 095201, 12 pp. doi: 10.1088/1751-8113/41/9/095201.

[3]

T. M. Atanacković and B. Stanković, On a numerical scheme for solving differential equations of fractional order, Mech. Res. Comm., 35 (2008), 429-438. doi: 10.1016/j.mechrescom.2008.05.003.

[4]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noethers theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.

[5]

N. J. Ford and M. L. Morgado, Fractional boundary value problems: Analysis and numerical methods, Fract. Calc. Appl. Anal., 14 (2011), 554-567. doi: 10.2478/s13540-011-0034-4.

[6]

N. J. Ford and M. L. Morgado, Distributed order equations as boundary value problems, Comput. Math. Appl., 64 (2012), 2973-2981. doi: 10.1016/j.camwa.2012.01.053.

[7]

B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.

[8]

B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.

[9]

B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927. doi: 10.1063/1.1597419.

[10]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, MA, 1951.

[11]

R. B. Guenther, C. M. Guenther and J. A. Gottsch, The Herglotz Lectures on Contact Trans- formations and Hamiltonian Systems, Lecture Notes in Nonlinear Analysis, 1, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń, 1996.

[12]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.

[14]

M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czenstochowa University of Technology, Czestochowa, 2009.

[15]

C. Lánczos, The Variational Principles of Mechanics, Fourth edition, Mathematical Expositions, No. 4, Univ. Toronto Press, Toronto, ON, 1970.

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations, Imp. Coll. Press, London, 2012. doi: 10.1142/p871.

[17]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett., 25 (2012), 1941-1946. doi: 10.1016/j.aml.2012.03.006.

[18]

V. J. Menon, N. Chanana and Y. Singh, A fresh look at the BCK frictional lagrangian, Prog. Theor. Phys., 98 (1997), 321-329. doi: 10.1143/PTP.98.321.

[19]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives, Comput. Math. Appl., 64 (2012), 3090-3100. doi: 10.1016/j.camwa.2012.01.068.

[21]

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899. doi: 10.1103/PhysRevE.53.1890.

[22]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.

[23]

S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam Journal of Mathematics, (2013), 1-11. doi: 10.1007/s10013-013-0048-9.

[1]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012

[2]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[3]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[4]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[5]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[6]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[7]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[8]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[9]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[11]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[12]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021021

[13]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[14]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[15]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[16]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[17]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[18]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[19]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[20]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]