-
Previous Article
Systems described by Volterra type integral operators
- DCDS-B Home
- This Issue
-
Next Article
Fractional variational principle of Herglotz
A singularly perturbed age structured SIRS model with fast recovery
1. | School of Mathematical Sciences, University of KwaZulu-Natal, Durban |
2. | School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa |
References:
[1] |
J. Banasiak, Mathematical Modelling in One Dimension, Cambridge University Press, Cambridge, 2013. |
[2] |
J. Banasiak, Introduction to Mathematical Methods in Population Dynamics,, in preparation., ().
|
[3] |
J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment, Math. Models Methods Appl. Sci., 23 (2013), 2647-2670.
doi: 10.1142/S0218202513500425. |
[4] |
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser/Springer Cham, Heidelberg/New York, 2014.
doi: 10.1007/978-3-319-05140-6. |
[5] |
J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population, Discrete Contin. Dyn. Syst., Ser. B, 17 (2012), 445-472
doi: 10.3934/dcdsb.2012.17.445. |
[6] |
J. Banasiak, A. Goswami and S. Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach, J. Evol. Equ., 11 (2011), 121-154.
doi: 10.1007/s00028-010-0086-7. |
[7] |
S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behaviour of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.
doi: 10.1137/0522069. |
[8] |
D. J. D. Earn, A Light Introduction to Modelling Recurrent Epidemics, in Mathematical Epidemiology (eds. F. Brauer, P. van den Driessche and J. Wu), LNM 1945, Springer, Berlin, 2008, 3-18.
doi: 10.1007/978-3-540-78911-6_1. |
[9] |
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, 7, Consiglio Nazionale delle Ricerche, Giardini, Pisa, 1995. |
[10] |
H. Inaba, A semigroup approach to the strong ergodic theorem of the multi state stable population process, Mathematical Population Studies, 1 (1988), 49-77.
doi: 10.1080/08898488809525260. |
[11] |
R. M'pika Massoukou, Age Structured Models of Mathematical Epidemiology, Ph.D thesis, UKZN, 2013. |
[12] |
J. Prüss, Equilibrium Solutions of Age-Specific Population Dynamics of Several Species, J. Math. Biol., 11 (1981), 65-84.
doi: 10.1007/BF00275825. |
[13] |
J. Prüss, Stability analysis for equilibria in age-specific population dynamics, Nonlinear Anal., 7 (1983), 1291-1313.
doi: 10.1016/0362-546X(83)90002-0. |
[14] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003. |
[15] |
G. F. Webb, Theory of Non-linear Age Dependent Population Dynamics, Marcel Dekker, New York, 1985. |
show all references
References:
[1] |
J. Banasiak, Mathematical Modelling in One Dimension, Cambridge University Press, Cambridge, 2013. |
[2] |
J. Banasiak, Introduction to Mathematical Methods in Population Dynamics,, in preparation., ().
|
[3] |
J. Banasiak and M. Lachowicz, On a macroscopic limit of a kinetic model of alignment, Math. Models Methods Appl. Sci., 23 (2013), 2647-2670.
doi: 10.1142/S0218202513500425. |
[4] |
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser/Springer Cham, Heidelberg/New York, 2014.
doi: 10.1007/978-3-319-05140-6. |
[5] |
J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population, Discrete Contin. Dyn. Syst., Ser. B, 17 (2012), 445-472
doi: 10.3934/dcdsb.2012.17.445. |
[6] |
J. Banasiak, A. Goswami and S. Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach, J. Evol. Equ., 11 (2011), 121-154.
doi: 10.1007/s00028-010-0086-7. |
[7] |
S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behaviour of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.
doi: 10.1137/0522069. |
[8] |
D. J. D. Earn, A Light Introduction to Modelling Recurrent Epidemics, in Mathematical Epidemiology (eds. F. Brauer, P. van den Driessche and J. Wu), LNM 1945, Springer, Berlin, 2008, 3-18.
doi: 10.1007/978-3-540-78911-6_1. |
[9] |
M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, 7, Consiglio Nazionale delle Ricerche, Giardini, Pisa, 1995. |
[10] |
H. Inaba, A semigroup approach to the strong ergodic theorem of the multi state stable population process, Mathematical Population Studies, 1 (1988), 49-77.
doi: 10.1080/08898488809525260. |
[11] |
R. M'pika Massoukou, Age Structured Models of Mathematical Epidemiology, Ph.D thesis, UKZN, 2013. |
[12] |
J. Prüss, Equilibrium Solutions of Age-Specific Population Dynamics of Several Species, J. Math. Biol., 11 (1981), 65-84.
doi: 10.1007/BF00275825. |
[13] |
J. Prüss, Stability analysis for equilibria in age-specific population dynamics, Nonlinear Anal., 7 (1983), 1291-1313.
doi: 10.1016/0362-546X(83)90002-0. |
[14] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003. |
[15] |
G. F. Webb, Theory of Non-linear Age Dependent Population Dynamics, Marcel Dekker, New York, 1985. |
[1] |
Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499 |
[2] |
Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237 |
[3] |
Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233 |
[4] |
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095 |
[5] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[6] |
Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265 |
[7] |
Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431 |
[8] |
Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617 |
[9] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[10] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[11] |
Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141 |
[12] |
Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008 |
[13] |
Valentin Butuzov, Nikolay Nefedov, Oleh Omel'chenko, Lutz Recke. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021226 |
[14] |
Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1 |
[15] |
Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267 |
[16] |
Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553 |
[17] |
Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 |
[18] |
Yacouba Simporé, Oumar Traoré. Null controllability of a nonlinear age, space and two-sex structured population dynamics model. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021052 |
[19] |
Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220 |
[20] |
Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]