-
Previous Article
Analysis of two quasistatic history-dependent contact models
- DCDS-B Home
- This Issue
-
Next Article
Systems described by Volterra type integral operators
A nonlocal problem describing spherical system of stars
1. | Institute of Mathematics and Computer Science, Opole University, ul. Oleska 48, 45-052 Opole, Poland, Poland |
References:
[1] |
T. A. Agekyan, Spherical systems of stars and galaxies in early stage of evolution, (Russian) Vestnik Leningrad Univ., I (1962), 153-161. |
[2] |
P. Biler and T. Nadzieja, Structure of steady states for Streater's energy-transport models of gravitating particles, Topological Methods in Nonlinear Analysis, 19 (2002), 283-301. |
[3] |
P. Biler, T. Nadzieja and R. Stańczy, Nonisothermal systems of self-attracting Fermi-Dirac particles, Banach Center Publ., 66 (2004), 61-78.
doi: 10.4064/bc66-0-5. |
[4] |
P. Biler, Ph. Laurençot and T. Nadzieja, On an evolution system describing self-gravitating Fermi-Dirac particles, Adv. Diff.Eq., 9 (2004), 563-586. |
[5] |
P. Biler and R. Stańczy, Nonlinear diffusion models for self-gravitating particles, Intern. Ser. Numer. Math, 154 (2007), 107-116.
doi: 10.1007/978-3-7643-7719-9_11. |
[6] |
J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press, Princeton, 1987.
doi: 10.1063/1.2811635. |
[7] |
A. M. Friedman and V. L. Polyachenko, Physics of Gravitating Systems I: Equilibrium and Stability, Springer, New York, 1984.
doi: 10.1007/978-3-642-87833-6. |
[8] |
A. Krzywicki and T. Nadzieja, Nonlocal elliptic problems, Banach Center Publ., 52 (2000), 147-152. |
show all references
References:
[1] |
T. A. Agekyan, Spherical systems of stars and galaxies in early stage of evolution, (Russian) Vestnik Leningrad Univ., I (1962), 153-161. |
[2] |
P. Biler and T. Nadzieja, Structure of steady states for Streater's energy-transport models of gravitating particles, Topological Methods in Nonlinear Analysis, 19 (2002), 283-301. |
[3] |
P. Biler, T. Nadzieja and R. Stańczy, Nonisothermal systems of self-attracting Fermi-Dirac particles, Banach Center Publ., 66 (2004), 61-78.
doi: 10.4064/bc66-0-5. |
[4] |
P. Biler, Ph. Laurençot and T. Nadzieja, On an evolution system describing self-gravitating Fermi-Dirac particles, Adv. Diff.Eq., 9 (2004), 563-586. |
[5] |
P. Biler and R. Stańczy, Nonlinear diffusion models for self-gravitating particles, Intern. Ser. Numer. Math, 154 (2007), 107-116.
doi: 10.1007/978-3-7643-7719-9_11. |
[6] |
J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press, Princeton, 1987.
doi: 10.1063/1.2811635. |
[7] |
A. M. Friedman and V. L. Polyachenko, Physics of Gravitating Systems I: Equilibrium and Stability, Springer, New York, 1984.
doi: 10.1007/978-3-642-87833-6. |
[8] |
A. Krzywicki and T. Nadzieja, Nonlocal elliptic problems, Banach Center Publ., 52 (2000), 147-152. |
[1] |
Pablo Cincotta, Claudia Giordano, Juan C. Muzzio. Global dynamics in a self--consistent model of elliptical galaxy. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 439-454. doi: 10.3934/dcdsb.2008.10.439 |
[2] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[3] |
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011 |
[4] |
Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157 |
[5] |
Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483 |
[6] |
Pierluigi Colli, Luca Scarpa. Existence of solutions for a model of microwave heating. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3011-3034. doi: 10.3934/dcds.2016.36.3011 |
[7] |
Jun Wang, Qiuping Geng, Maochun Zhu. Existence of the normalized solutions to the nonlocal elliptic system with partial confinement. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2187-2201. doi: 10.3934/dcds.2019092 |
[8] |
Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure and Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771 |
[9] |
Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure and Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361 |
[10] |
Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311 |
[11] |
H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119 |
[12] |
Zhiyu Wang, Yan Guo, Zhiwu Lin, Pingwen Zhang. Unstable galaxy models. Kinetic and Related Models, 2013, 6 (4) : 701-714. doi: 10.3934/krm.2013.6.701 |
[13] |
Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 |
[14] |
Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237 |
[15] |
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89 |
[16] |
Dong Li, Xiaoyi Zhang. Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1591-1606. doi: 10.3934/cpaa.2010.9.1591 |
[17] |
Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128 |
[18] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[19] |
Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473 |
[20] |
Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]