-
Previous Article
Variational approach to stability of semilinear wave equation with nonlinear boundary conditions
- DCDS-B Home
- This Issue
-
Next Article
Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian
Periodic solutions to differential equations with a generalized p-Laplacian
1. | Centre of Mathematics and Physics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland |
2. | Institute of Mathematics, Technical University of Łódź, 90-924 Łódź, ul. Wólczańska 215, Poland, Poland |
References:
[1] |
C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynam. Differential Equations, 22 (2010), 463-471.
doi: 10.1007/s10884-010-9172-3. |
[2] |
C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[3] |
C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2719.
doi: 10.1090/S0002-9939-2011-11101-8. |
[4] |
H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810. |
[5] |
J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian, Discrete Contin. Dyn. Syst., 33 (2013), 141-152.
doi: 10.3934/dcds.2013.33.141. |
[6] |
W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonl. Anal. TMA, 58 (2004), 477-488.
doi: 10.1016/j.na.2004.01.007. |
[7] |
S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems, J. Math. Anal. Appl., 351 (2009), 469-479.
doi: 10.1016/j.jmaa.2008.10.027. |
[8] |
R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.
doi: 10.1006/jdeq.1998.3425. |
[9] |
R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. |
[10] |
J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic, Le Mathematiche, 65 (2010), 97-107. |
[11] |
Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems, J. Appl. Math. Comput., 35 (2011), 11-18.
doi: 10.1007/s12190-009-0336-4. |
[12] |
P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian, Commun. Contemp. Mathematics, 13 (2011), 283-292.
doi: 10.1142/S0219199711004208. |
show all references
References:
[1] |
C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynam. Differential Equations, 22 (2010), 463-471.
doi: 10.1007/s10884-010-9172-3. |
[2] |
C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[3] |
C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2719.
doi: 10.1090/S0002-9939-2011-11101-8. |
[4] |
H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810. |
[5] |
J. A. Cid and P. J. Torres, On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian, Discrete Contin. Dyn. Syst., 33 (2013), 141-152.
doi: 10.3934/dcds.2013.33.141. |
[6] |
W. Ge and J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonl. Anal. TMA, 58 (2004), 477-488.
doi: 10.1016/j.na.2004.01.007. |
[7] |
S. Ma and Y. Zhang, Existence of infinitely many periodic solutions for ordinary p-Laplacian systems, J. Math. Anal. Appl., 351 (2009), 469-479.
doi: 10.1016/j.jmaa.2008.10.027. |
[8] |
R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.
doi: 10.1006/jdeq.1998.3425. |
[9] |
R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. |
[10] |
J. Mawhin, Periodic solutions of the forced pendulum: Classical vs relativistic, Le Mathematiche, 65 (2010), 97-107. |
[11] |
Xiang Lv, Shiping Lu and Ping Yan, Periodic solutions of non-autonomous ordinary p-Laplacian systems, J. Appl. Math. Comput., 35 (2011), 11-18.
doi: 10.1007/s12190-009-0336-4. |
[12] |
P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian, Commun. Contemp. Mathematics, 13 (2011), 283-292.
doi: 10.1142/S0219199711004208. |
[1] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[2] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[3] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[4] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 |
[5] |
Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 |
[6] |
Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139 |
[7] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[8] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[9] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[10] |
CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure and Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004 |
[11] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[12] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[13] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[14] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[15] |
Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469 |
[16] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[17] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[18] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[19] |
Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743 |
[20] |
Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]