October  2014, 19(8): 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

Variational approach to stability of semilinear wave equation with nonlinear boundary conditions

1. 

University of Lodz, Faculty of Math & Computer Sciences, Banacha 22, 90-238 Lodz

Received  October 2013 Revised  April 2014 Published  August 2014

We discuss solvability for the semilinear equation of the vibrating string $ x_{tt}(t,y)-\Delta x(t,y)=F_{x}(t,y,x(t,y))-G_{x}(t,y,x(t,y))$ in bounded domain and same type of nonlinearity on the boundary. To this effect we derive new variational methods one for the boundary equation the second for interior equation. Next we discuss stability of solutions with respect to initial conditions basing on variational approach.
Citation: Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603
References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems, Contemporar y Math., 426 (2007), 45-56. doi: 10.1090/conm/426/08183.

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411. doi: 10.1007/s00526-008-0188-z.

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611. doi: 10.1090/S0002-9947-05-03880-8.

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, DCDS, 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Mathematische Nachrichten, 284 (2011), 2032-2064. doi: 10.1002/mana.200910182.

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities, Mathematics and Computers in Simulation, 82 (2012), 1017-1029. doi: 10.1016/j.matcom.2011.04.006.

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term, Comm. Anal. Geom., 10 (2002), 451-466.

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies Math. Appl. I, Noth-Holland Publ. Comp., 1976.

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203. doi: 10.1007/BF01213863.

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy, Proc. Amer. Math. Soc., 129 (2001), 793-805. doi: 10.1090/S0002-9939-00-05743-9.

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation, Journal of Dynamical and Control Systems, 14 (2008), 537-558. doi: 10.1007/s10883-008-9050-z.

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems, Bull. Polish Acad. Sc. Math., 36 (1998), 615-621.

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions, Nonlinear Anal., 73 (2010), 1495-1514. doi: 10.1016/j.na.2010.04.035.

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J., 22 (1975), 273-303. doi: 10.1007/BF02761595.

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations, Bol. Soc. Parana. Mat., 25 (2007), 77-90. doi: 10.5269/bspm.v25i1-2.7427.

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Analysis, 41 (2000), 891-905. doi: 10.1016/S0362-546X(98)00317-4.

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea, 17 (1972), 173-193.

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J., 44 (2002), 375-395. doi: 10.1017/S0017089502030045.

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), 1426-1433. doi: 10.1137/S0036141004440198.

show all references

References:
[1]

G. Auchmuty, Variational principles for finite dimensional initial value problems, Contemporar y Math., 426 (2007), 45-56. doi: 10.1090/conm/426/08183.

[2]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411. doi: 10.1007/s00526-008-0188-z.

[3]

V. Barbu, I. Lasiecka and M. A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans. Amer. Math. Soc., 357 (2005), 2571-2611. doi: 10.1090/S0002-9947-05-03880-8.

[4]

L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, DCDS, 22 (2008), 835-860. doi: 10.3934/dcds.2008.22.835.

[5]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009.

[6]

L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Mathematische Nachrichten, 284 (2011), 2032-2064. doi: 10.1002/mana.200910182.

[7]

L. Bociu, M. Rammaha and D. Toundykov, Wave equations with super-critical interior and boundary nonlinearities, Mathematics and Computers in Simulation, 82 (2012), 1017-1029. doi: 10.1016/j.matcom.2011.04.006.

[8]

M. M. Cavalcanti, V. N. D. Cavalcanti, J. S. P. Filho and J. A. Soriano, Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term, Comm. Anal. Geom., 10 (2002), 451-466.

[9]

M. M. Cavalcanti, V. N. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[10]

M. M. Cavalcanti, V. N. D. Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158. doi: 10.1016/j.jde.2004.04.011.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies Math. Appl. I, Noth-Holland Publ. Comp., 1976.

[12]

R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203. doi: 10.1007/BF01213863.

[13]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{t t}$ = $Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.

[14]

H. A. Levine and G. Todorova, Blow up of solutions of the Cauch problem for a wave equation with nonlinear damping term and source terms and positive initial energy, Proc. Amer. Math. Soc., 129 (2001), 793-805. doi: 10.1090/S0002-9939-00-05743-9.

[15]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.

[16]

A. Nowakowski, Nonhomogeneous boundary value problem for semilinear hyperbolic equation, Journal of Dynamical and Control Systems, 14 (2008), 537-558. doi: 10.1007/s10883-008-9050-z.

[17]

A. Nowakowski, Nonlinear parabolic equations associated with subdifferential operators, periodic problems, Bull. Polish Acad. Sc. Math., 36 (1998), 615-621.

[18]

A. Nowakowski, Solvability and stability of a semilinear wave equation with nonlinear boundary conditions, Nonlinear Anal., 73 (2010), 1495-1514. doi: 10.1016/j.na.2010.04.035.

[19]

L. E. Payne and D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J., 22 (1975), 273-303. doi: 10.1007/BF02761595.

[20]

M. A. Rammaha, The influence of damping and source terms on solutions of nonlinear wave equations, Bol. Soc. Parana. Mat., 25 (2007), 77-90. doi: 10.5269/bspm.v25i1-2.7427.

[21]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Analysis, 41 (2000), 891-905. doi: 10.1016/S0362-546X(98)00317-4.

[22]

H. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japonicea, 17 (1972), 173-193.

[23]

E. Vitillaro, Global existence of the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[24]

E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J., 44 (2002), 375-395. doi: 10.1017/S0017089502030045.

[25]

B. Yordanov and Q. S. Zhang, Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36 (2005), 1426-1433. doi: 10.1137/S0036141004440198.

[1]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[3]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[4]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[5]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[6]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[7]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[8]

Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems and Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51

[9]

Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362

[10]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[11]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[12]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[13]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[14]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[15]

Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130

[16]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[17]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[18]

Masataka Shibata. Multiplicity of positive solutions to semi-linear elliptic problems on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4107-4126. doi: 10.3934/cpaa.2021147

[19]

Sebastian Engel, Karl Kunisch. Optimal control of the linear wave equation by time-depending BV-controls: A semi-smooth Newton approach. Mathematical Control and Related Fields, 2020, 10 (3) : 591-622. doi: 10.3934/mcrf.2020012

[20]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 315-338. doi: 10.3934/dcdss.2021011

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]