October  2014, 19(8): 2631-2639. doi: 10.3934/dcdsb.2014.19.2631

A note on the existence and properties of evanescent solutions for nonlinear elliptic problems

1. 

Faculty of Mathematics and Computer Science, University of Lodz, S. Banacha 22, 90-238 Lodz, Poland

Received  October 2013 Revised  April 2014 Published  August 2014

Basing ourselves on the subsolution and supersolution method we investigate the existence and properties of solutions of the following class of elliptic differential equations $div(a(||x||)\nabla u(x)) + f(x,u(x)) + g(||x||)k(x\cdot\nabla u(x)) = 0,$ $x\in\mathbb{R}^{n},||x||>R.$ Our main result concernes the behavior of solution at infinity.
Citation: Aleksandra Orpel. A note on the existence and properties of evanescent solutions for nonlinear elliptic problems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2631-2639. doi: 10.3934/dcdsb.2014.19.2631
References:
[1]

A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 54 (1996), 147-154. doi: 10.1017/S0004972700015148.

[2]

A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl., 213 (1997), 334-339. doi: 10.1006/jmaa.1997.5541.

[3]

A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl., 184 (2005), 131-138. doi: 10.1007/s10231-004-0100-1.

[4]

J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl., 336 (2007), 1395-1405. doi: 10.1016/j.jmaa.2007.03.071.

[5]

J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlin. Anal., T.M.A., 68 (2008), 3697-3706. doi: 10.1016/j.na.2007.04.012.

[6]

S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl., 333 (2007), 863-870. doi: 10.1016/j.jmaa.2006.12.004.

[7]

S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J Math. Anal. Appl., 353 (2009), 215-223. doi: 10.1016/j.jmaa.2008.12.003.

[8]

S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Analysis, 73 (2010), 660-672. doi: 10.1016/j.na.2010.03.054.

[9]

M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Analysis, 64 (2006), 1608-1620. doi: 10.1016/j.na.2005.07.010.

[10]

M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Analysis, 64 (2006), 1578-1586. doi: 10.1016/j.na.2005.07.008.

[11]

M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Analysis, 67 (2007), 1147-1154. doi: 10.1016/j.na.2006.07.002.

[12]

E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl., 75 (1980), 121-133. doi: 10.1016/0022-247X(80)90310-8.

[13]

B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations, Colloq. Math., 92 (2002), 141-151. doi: 10.4064/cm92-1-12.

[14]

E. Wahlén, Positive solutions of second-order differential equations, Nonlinear Anal., 58 (2004), 359-366. doi: 10.1016/j.na.2004.05.008.

[15]

Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391-403. doi: 10.1016/S0362-546X(03)00089-0.

show all references

References:
[1]

A. Constantin, Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 54 (1996), 147-154. doi: 10.1017/S0004972700015148.

[2]

A. Constantin, Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl., 213 (1997), 334-339. doi: 10.1006/jmaa.1997.5541.

[3]

A. Constantin, On the existence of positive solutions of second order differential equations, Ann. Mat. Pura Appl., 184 (2005), 131-138. doi: 10.1007/s10231-004-0100-1.

[4]

J. Deng, Bounded positive solutions of semilinear elliptic equations, J. Math. Anal. Appl., 336 (2007), 1395-1405. doi: 10.1016/j.jmaa.2007.03.071.

[5]

J. Deng, Existence of bounded positive solutions of semilinear elliptic equations, Nonlin. Anal., T.M.A., 68 (2008), 3697-3706. doi: 10.1016/j.na.2007.04.012.

[6]

S. Djebali, T. Moussaoui and O. G. Mustafa, Positive evanescent solutions of nonlinear elliptic equations, J. Math. Anal. Appl., 333 (2007), 863-870. doi: 10.1016/j.jmaa.2006.12.004.

[7]

S. Djebali and A. Orpel, A note on positive evanescent solutions for a certain class of elliptic problems, J Math. Anal. Appl., 353 (2009), 215-223. doi: 10.1016/j.jmaa.2008.12.003.

[8]

S. Djebali and A. Orpel, The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains, Nonlinear Analysis, 73 (2010), 660-672. doi: 10.1016/j.na.2010.03.054.

[9]

M. Ehrnström, Positive solutions for second-order nonlinear differential equation, Nonlinear Analysis, 64 (2006), 1608-1620. doi: 10.1016/j.na.2005.07.010.

[10]

M. Ehrnström, On radial solutions of certain semi-linear elliptic equations, Nonlinear Analysis, 64 (2006), 1578-1586. doi: 10.1016/j.na.2005.07.008.

[11]

M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic equations, Nonlinear Analysis, 67 (2007), 1147-1154. doi: 10.1016/j.na.2006.07.002.

[12]

E. S. Noussair and C. A. Swanson, Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl., 75 (1980), 121-133. doi: 10.1016/0022-247X(80)90310-8.

[13]

B. Przeradzki and R. Stańczy, Positive solutions for sublinear elliptic equations, Colloq. Math., 92 (2002), 141-151. doi: 10.4064/cm92-1-12.

[14]

E. Wahlén, Positive solutions of second-order differential equations, Nonlinear Anal., 58 (2004), 359-366. doi: 10.1016/j.na.2004.05.008.

[15]

Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391-403. doi: 10.1016/S0362-546X(03)00089-0.

[1]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[2]

Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367

[3]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[4]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[5]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[6]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[7]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

[8]

Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209

[9]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[10]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[11]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, 2021, 29 (3) : 2359-2373. doi: 10.3934/era.2020119

[13]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[14]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

[15]

Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092

[16]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[17]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[18]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[19]

Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sine-Gordon equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 283-294. doi: 10.3934/cpaa.2005.4.283

[20]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]