Advanced Search
Article Contents
Article Contents

Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints

Abstract Related Papers Cited by
  • We consider the optimal control problem of minimizing an objective function that is quadratic in the control over a fixed interval for a multi-input bilinear dynamical system in the presence of control constraints. Such models are motivated by and applied to mathematical models for cancer chemotherapy over an a priori specified fixed therapy horizon. The necessary conditions for optimality of the Pontryagin maximum principle are easily evaluated and give a functional description of optimal controls as continuous functions of states and multipliers. However, there is no a priori guarantee that a numerically computed extremal controlled trajectory is locally optimal. In this paper, we formulate sufficient conditions for strong local optimality that are based on the existence of a bounded solution to a matrix Riccati differential equation. The theory is applied to a $3$-compartment model for multi-drug cancer chemotherapy with cytotoxic and cytostatic agents. The numerical results are compared with those for a corresponding optimal control problem when the objective is taken linear in the controls.
    Mathematics Subject Classification: Primary: 49K15; Secondary: 49L99, 93C15.


    \begin{equation} \\ \end{equation}
  • [1]

    B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Series: Mathematics and Applications, Vol. 40, Springer Verlag, 2003.


    J. V. Breakwell, J. L. Speyer and A. E. Bryson, jr., Optimization and control of nonlinear systems using the second variation, SIAM J. Control, 1 (1963), 193-223.doi: 10.1137/0301011.


    A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.


    A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975.


    C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and realtime control, J. of Computational and Applied Mathematics, 120 (2000), 85-108.doi: 10.1016/S0377-0427(00)00305-8.


    C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in Online Optimization of Large Scale Systems (eds. M. Grötschel, S.O. Krumke, J. Rambau), Springer-Verlag, Berlin, 2001, 3-16.


    C. Büskens and H. Maurer, Sensitivity analysis and real-time control of parametric optimal control problems using nonlinear programming methods, in Online Optimization of Large Scale Systems (eds. M. Grötschel, S.O. Krumke, J. Rambau), Springer-Verlag, Berlin, 2001, 57-68.


    N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control, Trans. of the American Mathematical Society, 348 (1996), 3133-3153.doi: 10.1090/S0002-9947-96-01577-2.


    J. H. Eschenburg and E. Heintze, Comparison theory for Riccati equations, Manuscripta Matematicae, 68 (1990), 209-214.doi: 10.1007/BF02568760.


    R. Fourer, D.M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, 1993.


    H. K. Khalil, Nonlinear Systems, 3rd. ed., Prentice Hall, 2002.


    M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletin of the Silesian Technical University, 65 (1983), 120-130.


    H. W. Knobloch and H. Kwakernaak, Lineare Kontrolltheorie, Springer Verlag, Berlin, 1985.doi: 10.1007/978-3-642-69884-2.


    U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.doi: 10.1023/A:1016027113579.


    U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183-206.doi: 10.1142/S0218339002000597.


    U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177-197.doi: 10.1142/S0218339014400014.


    U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10 (2013), 803-819.doi: 10.3934/mbe.2013.10.803.


    S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical & Computational Biology, 2007.


    K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints, Computational Optimization and Applications, 5 (1996), 253-283.doi: 10.1007/BF00248267.


    H. Maurer, C. Büskens, J. H. Kim and Y. Kaja, Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls, Optimal Control, Applications and Methods, 26 (2005), 129-156.doi: 10.1002/oca.756.


    N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012.doi: 10.1137/1.9781611972368.


    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964.


    H. Schättler and U. Ledzewicz, Perturbation feedback control: A geometric interpretation, Numerical Algebra, Control and Optimization, 2 (2012), 631-654.doi: 10.3934/naco.2012.2.631.


    H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer Verlag, 2012.doi: 10.1007/978-1-4614-3834-2.


    H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi and M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy, in Proc. of the 51st IEEE Conference on Decision and Control (Maui, Hawaii), IEEE, 2012, 7691-7696.


    A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, IMACS Ann. Comput. Appl. Math., 5 (1989), 51-53.


    A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 41-54.doi: 10.1142/S0218339095000058.


    A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368.


    A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2001), 375-386.doi: 10.1016/S0362-546X(01)00184-5.


    A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell prolif., 29 (1996), 117-139.doi: 10.1046/j.1365-2184.1996.00995.x.


    A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y.

  • 加载中

Article Metrics

HTML views() PDF downloads(141) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint