    • Previous Article
Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences
• DCDS-B Home
• This Issue
• Next Article
Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints
October  2014, 19(8): 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

## On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type

 1 University of Bialystok, ul. Akademicka 2, 15-267 Białystok 2 Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

A Volterra difference equation of the form $$x(n+2)=a(n)+b(n)x(n+1)+c(n)x(n)+\sum\limits^{n+1}_{i=1}K(n,i)x(i)$$ where $a, b, c, x \colon\mathbb{N} \to\mathbb{R}$ and $K \colon \mathbb{N}\times\mathbb{N}\to \mathbb{R}$ is studied. For every admissible constant $C \in \mathbb{R}$, sufficient conditions for the existence of a solution $x \colon\mathbb{N} \to\mathbb{R}$ of the above equation such that $x(n)\sim C \, n \, \beta(n),$ where $\beta(n)= \frac{1}{2^n}\prod\limits_{j=1}^{n-1}b(j)$, are presented. As a corollary of the main result, sufficient conditions for the existence of an eventually positive, oscillatory, and quickly oscillatory solution $x$ of this equation are obtained. Finally, a conditions under which considered equation possesses an asymptotically periodic solution are given.
Citation: Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681
##### References:
  R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000.  J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations, J. Difference Equ. Appl., 12 (2006), 1257-1275. doi: 10.1080/10236190600986594.   J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations, Tatra Mt. Math. Publ., 43 (2009), 51-61. doi: 10.2478/v10127-009-0024-7.   J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations, Abstr. Appl. Anal., (2011), Art. ID 370982, 14 pp. doi: 10.1155/2011/370982.   J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence, Appl. Math. Comput., 218 (2012), 9310-9320. doi: 10.1016/j.amc.2012.03.010.   S. N. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.  T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem, J. Differ. Equations Appl., 19 (2013), 1645-1653. doi: 10.1080/10236198.2013.769974.   I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations, Adv. Difference Equ., (2008), Art. ID 932831, 22 pp.  I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations, Fasc. Math., 44 (2010), 53-67.  W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, 2001.  V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.   M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations, Appl. Math. Comput., 220 (2013), 365-373. doi: 10.1016/j.amc.2013.06.032.   J. Morchało, Perturbation theory for discrete Volterra equation, Int. J. Pure Appl. Math., 68 (2011), 371-385.  J. Morchało, Volterra summation equations and second order difference equations, Math. Bohem., 135 (2010), 41-56.  J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays, Comput. Math. Appl., 64 (2012), 2233-2240. doi: 10.1016/j.camwa.2012.01.075.   J. Musielak, Wstęp do Analizy Funkcjonalnej, (in Polish) PWN, Warszawa 1976. E. Schmeidel, Properties of Solutions of Higher Order Difference Equations, Publishing House of Poznan University of Technology, 2010. show all references

##### References:
  R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000.  J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations, J. Difference Equ. Appl., 12 (2006), 1257-1275. doi: 10.1080/10236190600986594.   J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations, Tatra Mt. Math. Publ., 43 (2009), 51-61. doi: 10.2478/v10127-009-0024-7.   J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations, Abstr. Appl. Anal., (2011), Art. ID 370982, 14 pp. doi: 10.1155/2011/370982.   J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence, Appl. Math. Comput., 218 (2012), 9310-9320. doi: 10.1016/j.amc.2012.03.010.   S. N. Elaydi, An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.  T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem, J. Differ. Equations Appl., 19 (2013), 1645-1653. doi: 10.1080/10236198.2013.769974.   I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations, Adv. Difference Equ., (2008), Art. ID 932831, 22 pp.  I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations, Fasc. Math., 44 (2010), 53-67.  W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, 2001.  V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.   M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations, Appl. Math. Comput., 220 (2013), 365-373. doi: 10.1016/j.amc.2013.06.032.   J. Morchało, Perturbation theory for discrete Volterra equation, Int. J. Pure Appl. Math., 68 (2011), 371-385.  J. Morchało, Volterra summation equations and second order difference equations, Math. Bohem., 135 (2010), 41-56.  J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays, Comput. Math. Appl., 64 (2012), 2233-2240. doi: 10.1016/j.camwa.2012.01.075.   J. Musielak, Wstęp do Analizy Funkcjonalnej, (in Polish) PWN, Warszawa 1976. E. Schmeidel, Properties of Solutions of Higher Order Difference Equations, Publishing House of Poznan University of Technology, 2010. Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385  Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315  Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115  Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027  Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057  Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033  Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134  Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075  Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340  Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169  Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557  Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579  Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961  Szandra Beretka, Gabriella Vas. Stable periodic solutions for Nazarenko's equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3257-3281. doi: 10.3934/cpaa.2020144  Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823  Barbara Kaltenbacher. Periodic solutions and multiharmonic expansions for the Westervelt equation. Evolution Equations and Control Theory, 2021, 10 (2) : 229-247. doi: 10.3934/eect.2020063  Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303  P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220  Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587  Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050

2020 Impact Factor: 1.327