-
Previous Article
Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds
- DCDS-B Home
- This Issue
-
Next Article
Transport semigroup associated to positive boundary conditions of unit norm: A Dyson-Phillips approach
Straightforward approximation of the translating and pulsating free surface Green function
1. | Ship Science, University of Southampton, Southampton SO17 1BJ, United Kingdom |
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Mathematics Series 55, Washington, USA, 1964.
doi: 10.1119/1.1972842. |
[2] |
N. F. Bondarenko, M. Z. Gak and F. V. Dolzhansky, Laboratory and theoretical models of a plane periodic flow, Izv. Atmos. Oceanic Phys., 15 (1979), 711-716. |
[3] |
M. Bessho, On the fundamental singularity in a theory of motions in a seaway, Memories of the Defense Academy Japan, 17 (1977), 95-105. |
[4] |
J. G. Charney and J. G. DeVore, Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2. |
[5] |
Z. -M. Chen and W. G. Price, Secondary fluid flows driven electromagnetically in a two-dimensional extended duct, Proc. R. Soc. Lond. Ser. A, 461 (2005), 1659-1683.
doi: 10.1098/rspa.2005.1454. |
[6] |
Z. -M. Chen, A vortex based panel method for potential flow simulation around a hydrofoil, J. Fluids Struct., 28 (2012), 378-391.
doi: 10.1016/j.jfluidstructs.2011.10.003. |
[7] |
Z. -M. Chen, Harmonic function expansion for translating Green functions and dissipative free-surface waves, Wave Motion, 50 (2013), 282-294.
doi: 10.1016/j.wavemoti.2012.09.005. |
[8] |
Z. -M. Chen, Regular wave integral approach to the prediction of hydrodynamic performance of submerged spheroid, Wave Motion, 51 (2014), 193-205.
doi: 10.1016/j.wavemoti.2013.06.005. |
[9] |
G. Dagan and T. Miloh, Free-surface flow past oscillating singularities at resonant frequency, J. Fluid Mech., 120 (1982), 139-54.
doi: 10.1017/S0022112082002705. |
[10] |
L. K. Forbes, An algorithm for 3-dimensional free-surface problems in hydrodynamics, J. Comput. Phys., 82 (1989), 330-347.
doi: 10.1016/0021-9991(89)90052-1. |
[11] |
J. Grue and E. Palm, Wave radiation and wave diffraction from a submerged body in a uniform current, J. Fluid Mech., 151 (1985), 257-78.
doi: 10.1017/S0022112085000957. |
[12] |
M. D. Haskind, On wave motion of a heavy fluid, Prikl. Mat. Mekh., 18 (1954), 15-26. |
[13] |
T. H. Havelock, Wave resistance, Proc. R. Soc. Lond. Ser. A, 118 (1928), 24-33.
doi: 10.1098/rspa.1928.0033. |
[14] |
T. H. Havelock, The theory of wave resistance, Proc. R. Soc. Lond. Ser. A, 138 (1932), 339-348.
doi: 10.1098/rspa.1932.0188. |
[15] |
A. J. Hess and A. M. O. Smith, Calculation of non-lifting potential flow about arbitrary three-dimensional bodies, J. Ship Res., 8 (1964), 22-24. |
[16] |
A. J. Hess and A. M. O. Smith, Calculation of potential flow about arbitrary bodies, Prog. Aeronautical Sci., 8 (1966), 1-138.
doi: 10.1016/0376-0421(67)90003-6. |
[17] |
J. L. Hess and D. C. Wilcox, Progress in the Solution of the Problem of a Three-Dimensional Body Oscillating in the Presence of a Free Surface, Final technical report, McDonnell Douglas Company Rep. DAC 67647, 1969. |
[18] |
R. B. Inglis and W. G. Price, Calculation of the velocity potential of a translating, pulsating source, Transactions of the Royal Institution of Naval Architects, 123 (1980), 163-175. |
[19] |
H. Iwashita and M. Ohkusu, The Green function method for ship motions at forward speed, Ship Tech. Res., 39 (1992), 3-21. |
[20] |
Y. Liu and D. K. P. Yue, On the solution near the critical frequency for an oscillating and translating body in or near a free surface, J. Fluid Mech., 254 (1993), 251-66.
doi: 10.1017/S0022112093002113. |
[21] |
A. Mo and E. Palm, On radiated and scattered waves from a submerged elliptic cylinder in a uniform current, J. Ship Res., 31 (1987), 23-33. |
[22] |
J. N. Newman, Algorithms for the free-surface Green function, J. Engng. Math., 19 (1985), 57-67.
doi: 10.1007/BF00055041. |
[23] |
J. N. Newman, Evaluation of the wave-resistance Green function: Part 1 - The double integral, J. Ship Res., 31 (1987), 79-90. |
[24] |
J. N. Newman, Evaluation of the wave-resistance Green function: Part 2 - the single integral on the centerplane, J. Ship Res., 31 (1987), 145-150. |
[25] |
F. Noblesse, Alternative integral representations for the Green function of the theory of ship wave resistance, J. Engng. Math., 15 (1981), 241-265.
doi: 10.1007/BF00042923. |
[26] |
F. Noblesse, The Green function in the theory of radiation and diffraction of regular water waves by a body, J. Engng. Math., 16 (1982), 137-169.
doi: 10.1007/BF00042551. |
[27] |
J. V. Wehausen and E. V. Laitone, Surface waves, in Fluid Dynamics III, (Eds. S. Flugge, C. Truesdell), in Handbuch der Physik 9, Springer, Berlin, 1960, 446-778. |
[28] |
Y. Zhang and S. Zhu, Resonant interaction between a uniform current and an oscillating object, Appl. Ocean Res., 27 (1995), 259-264.
doi: 10.1016/0141-1187(95)00018-6. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Mathematics Series 55, Washington, USA, 1964.
doi: 10.1119/1.1972842. |
[2] |
N. F. Bondarenko, M. Z. Gak and F. V. Dolzhansky, Laboratory and theoretical models of a plane periodic flow, Izv. Atmos. Oceanic Phys., 15 (1979), 711-716. |
[3] |
M. Bessho, On the fundamental singularity in a theory of motions in a seaway, Memories of the Defense Academy Japan, 17 (1977), 95-105. |
[4] |
J. G. Charney and J. G. DeVore, Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2. |
[5] |
Z. -M. Chen and W. G. Price, Secondary fluid flows driven electromagnetically in a two-dimensional extended duct, Proc. R. Soc. Lond. Ser. A, 461 (2005), 1659-1683.
doi: 10.1098/rspa.2005.1454. |
[6] |
Z. -M. Chen, A vortex based panel method for potential flow simulation around a hydrofoil, J. Fluids Struct., 28 (2012), 378-391.
doi: 10.1016/j.jfluidstructs.2011.10.003. |
[7] |
Z. -M. Chen, Harmonic function expansion for translating Green functions and dissipative free-surface waves, Wave Motion, 50 (2013), 282-294.
doi: 10.1016/j.wavemoti.2012.09.005. |
[8] |
Z. -M. Chen, Regular wave integral approach to the prediction of hydrodynamic performance of submerged spheroid, Wave Motion, 51 (2014), 193-205.
doi: 10.1016/j.wavemoti.2013.06.005. |
[9] |
G. Dagan and T. Miloh, Free-surface flow past oscillating singularities at resonant frequency, J. Fluid Mech., 120 (1982), 139-54.
doi: 10.1017/S0022112082002705. |
[10] |
L. K. Forbes, An algorithm for 3-dimensional free-surface problems in hydrodynamics, J. Comput. Phys., 82 (1989), 330-347.
doi: 10.1016/0021-9991(89)90052-1. |
[11] |
J. Grue and E. Palm, Wave radiation and wave diffraction from a submerged body in a uniform current, J. Fluid Mech., 151 (1985), 257-78.
doi: 10.1017/S0022112085000957. |
[12] |
M. D. Haskind, On wave motion of a heavy fluid, Prikl. Mat. Mekh., 18 (1954), 15-26. |
[13] |
T. H. Havelock, Wave resistance, Proc. R. Soc. Lond. Ser. A, 118 (1928), 24-33.
doi: 10.1098/rspa.1928.0033. |
[14] |
T. H. Havelock, The theory of wave resistance, Proc. R. Soc. Lond. Ser. A, 138 (1932), 339-348.
doi: 10.1098/rspa.1932.0188. |
[15] |
A. J. Hess and A. M. O. Smith, Calculation of non-lifting potential flow about arbitrary three-dimensional bodies, J. Ship Res., 8 (1964), 22-24. |
[16] |
A. J. Hess and A. M. O. Smith, Calculation of potential flow about arbitrary bodies, Prog. Aeronautical Sci., 8 (1966), 1-138.
doi: 10.1016/0376-0421(67)90003-6. |
[17] |
J. L. Hess and D. C. Wilcox, Progress in the Solution of the Problem of a Three-Dimensional Body Oscillating in the Presence of a Free Surface, Final technical report, McDonnell Douglas Company Rep. DAC 67647, 1969. |
[18] |
R. B. Inglis and W. G. Price, Calculation of the velocity potential of a translating, pulsating source, Transactions of the Royal Institution of Naval Architects, 123 (1980), 163-175. |
[19] |
H. Iwashita and M. Ohkusu, The Green function method for ship motions at forward speed, Ship Tech. Res., 39 (1992), 3-21. |
[20] |
Y. Liu and D. K. P. Yue, On the solution near the critical frequency for an oscillating and translating body in or near a free surface, J. Fluid Mech., 254 (1993), 251-66.
doi: 10.1017/S0022112093002113. |
[21] |
A. Mo and E. Palm, On radiated and scattered waves from a submerged elliptic cylinder in a uniform current, J. Ship Res., 31 (1987), 23-33. |
[22] |
J. N. Newman, Algorithms for the free-surface Green function, J. Engng. Math., 19 (1985), 57-67.
doi: 10.1007/BF00055041. |
[23] |
J. N. Newman, Evaluation of the wave-resistance Green function: Part 1 - The double integral, J. Ship Res., 31 (1987), 79-90. |
[24] |
J. N. Newman, Evaluation of the wave-resistance Green function: Part 2 - the single integral on the centerplane, J. Ship Res., 31 (1987), 145-150. |
[25] |
F. Noblesse, Alternative integral representations for the Green function of the theory of ship wave resistance, J. Engng. Math., 15 (1981), 241-265.
doi: 10.1007/BF00042923. |
[26] |
F. Noblesse, The Green function in the theory of radiation and diffraction of regular water waves by a body, J. Engng. Math., 16 (1982), 137-169.
doi: 10.1007/BF00042551. |
[27] |
J. V. Wehausen and E. V. Laitone, Surface waves, in Fluid Dynamics III, (Eds. S. Flugge, C. Truesdell), in Handbuch der Physik 9, Springer, Berlin, 1960, 446-778. |
[28] |
Y. Zhang and S. Zhu, Resonant interaction between a uniform current and an oscillating object, Appl. Ocean Res., 27 (1995), 259-264.
doi: 10.1016/0141-1187(95)00018-6. |
[1] |
Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure and Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379 |
[2] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287 |
[3] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241 |
[4] |
Jing Cui, Guangyue Gao, Shu-Ming Sun. Controllability and stabilization of gravity-capillary surface water waves in a basin. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2035-2063. doi: 10.3934/cpaa.2021158 |
[5] |
Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419 |
[6] |
Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 351-357. doi: 10.3934/naco.2015.5.351 |
[7] |
Yuan Gao, Hangjie Ji, Jian-Guo Liu, Thomas P. Witelski. A vicinal surface model for epitaxial growth with logarithmic free energy. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4433-4453. doi: 10.3934/dcdsb.2018170 |
[8] |
Calin I. Martin. On three-dimensional free surface water flows with constant vorticity. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022053 |
[9] |
Elena Bonetti, Cecilia Cavaterra, Francesco Freddi, Maurizio Grasselli, Roberto Natalini. A nonlinear model for marble sulphation including surface rugosity: Theoretical and numerical results. Communications on Pure and Applied Analysis, 2019, 18 (2) : 977-998. doi: 10.3934/cpaa.2019048 |
[10] |
Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153 |
[11] |
Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185 |
[12] |
Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations and Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007 |
[13] |
Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations and Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025 |
[14] |
Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429 |
[15] |
Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315 |
[16] |
Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems and Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863 |
[17] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[18] |
Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1 |
[19] |
Erica Clay, Boris Hasselblatt, Enrique Pujals. Desingularization of surface maps. Electronic Research Announcements, 2017, 24: 1-9. doi: 10.3934/era.2017.24.001 |
[20] |
Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81. |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]