\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics of a piece-wise epidemic model with switching vaccination strategy

Abstract Related Papers Cited by
  • A piece-wise epidemic model of a switching vaccination program, implemented once the number of people exposed to a disease-causing virus reaches a critical level, is proposed. In addition, variation or uncertainties in interventions are examined with a perturbed system version of the model. We also analyzed the global dynamic behaviors of both the original piece-wise system and the perturbed version theoretically, using generalized Jacobian theory, Lyapunov constants for a non-smooth vector field and a generalization of Dulac's criterion. The main results show that, as the critical value varies, there are three possibilities for stabilization of the piece-wise system: (i) at the disease-free equilibrium; (ii) at the endemic states for the two subsystems or (iii) at a generalized equilibrium which is a novel global attractor for non-smooth systems. The perturbed system exhibits new global attractors including a pseudo-focus of parabolic-parabolic (PP) type, a pseudo-equilibrium and a crossing cycle surrounding a sliding mode region. Our findings demonstrate that an infectious disease can be eradicated either by increasing the vaccination rate or by stabilizing the number of infected individuals at a previously given level, conditional upon a suitable critical level and the parameter values.
    Mathematics Subject Classification: Primary: 92D30, 92B05; Secondary: 34C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Arino, C. C. Mccluskey and P. V. D. Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276.doi: 10.1137/S0036139902413829.

    [2]

    M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems, Springer, New York, 2008.

    [3]
    [4]

    F. Clarke, Y. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.

    [5]

    A. B. Claudio, P. D. S. Paulo and A. T. Marco, A singular approach to discontinuous vector fields on the plane, J. Diff. Equa., 231 (2006), 633-655.doi: 10.1016/j.jde.2006.08.017.

    [6]

    B. Coll, A. Gasull and R. Prohens, Degenerate hopf bifurcations in discontinuous planar system, J. Math. Anal. Appl., 253 (2001), 671-690.doi: 10.1006/jmaa.2000.7188.

    [7]

    A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Dordrecht, 1988.doi: 10.1007/978-94-015-7793-9.

    [8]

    D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity, Nonl. Anal. TMA., 63 (2005), e779-e788.doi: 10.1016/j.na.2004.12.018.

    [9]

    M. A. Han and W. N. Zhang, On hopf bifurcation in non-smooth planar systems, J. Diff. Equa., 248 (2010), 2399-2416.doi: 10.1016/j.jde.2009.10.002.

    [10]
    [11]
    [12]

    J. Hui and L. S. Chen, Impulsive vaccination of SIR epidemic models with nonlinear incidence rates, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 595-605.doi: 10.3934/dcdsb.2004.4.595.

    [13]

    G. R. Jiang and Q. G. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination, Appl. Math. Comput., 215 (2009), 1035-1046.doi: 10.1016/j.amc.2009.06.032.

    [14]

    R. I. Leine, Bifurcations of equilibria in non-smooth continuous systems, Phys. D, 223 (2006), 121-137.doi: 10.1016/j.physd.2006.08.021.

    [15]

    R. I. Leine and D. H. van Campen, Bifurcation phenomena in non-smooth dynamical systems, Eur. J. Mech. A Solids, 25 (2006), 595-616.doi: 10.1016/j.euromechsol.2006.04.004.

    [16]

    D. Liberzon, Switching in Systems and Control, Springer-Verlag, New York, 1973.doi: 10.1007/978-1-4612-0017-8.

    [17]

    J. Melin, Does distribution theory contain means for extending Poincare-Bendixson theory, J. Math. Anal. Appl., 303 (2005), 81-89.doi: 10.1016/j.jmaa.2004.06.069.

    [18]

    M. E. M. Meza, A. Bhaya, E. K. Kaszkurewicz, D. A. Silveira and M. I. Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach, Theor. Popul. Biol., 67 (2005), 273-284.doi: 10.1016/j.tpb.2005.01.005.

    [19]

    M. E. M. Meza, M. I. S. Costa, A. Bhaya and E. Kaszkurewicz, Threshold policies in the control of predator-prey models, Preprints of the 15th Triennial World Congress (IFAC), Barcelona, Spain, (2002), 1-6.

    [20]

    L. F. Nie, Z. D. Teng and A. Torres, Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination, Nonl. Anal. RWA., 13 (2012), 1621-1629.doi: 10.1016/j.nonrwa.2011.11.019.

    [21]

    A. d'. Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Bios., 179 (2002), 57-72.doi: 10.1016/S0025-5564(02)00095-0.

    [22]

    L. Sanchez, Convergence to equilibria in the Lorenz system via monotone methods, J. Diff. Equa., 217 (2005), 341-362.doi: 10.1016/j.jde.2004.08.005.

    [23]

    S. Y. Tang and J. H. Liang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge, Nonl. Anal. TMA., 76 (2013), 165-180.doi: 10.1016/j.na.2012.08.013.

    [24]

    S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcation of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.doi: 10.1137/110847020.

    [25]

    S. Y. Tang, Y. N. Xiao and et.al., Community-based measures for mitigating the 2009 H1N1 pandemic in China, PLoS ONE, 5 (2010), 1-11(e10911).doi: 10.1371/journal.pone.0010911.

    [26]

    V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems, Mir, Moscow, 1978.

    [27]

    V. I. Utkin, Sliding Modes in Control and Optimization, Springer, Berlin, 1992.doi: 10.1007/978-3-642-84379-2.

    [28]

    A. L. Wang and Y. N. Xiao, Sliding bifurcation and global dynamics of a Filippov epidemic model with vaccination, Internat. J. Bifur. Chaos, 23 (2013).doi: 10.1142/S0218127413501447.

    [29]

    W. D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.doi: 10.1016/j.mbs.2005.12.022.

    [30]

    Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonl. Anal. RWA., 11 (2010), 4154-4163.doi: 10.1016/j.nonrwa.2010.05.002.

    [31]

    Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74 (2012), 2403-2422.doi: 10.1007/s11538-012-9758-5.

    [32]

    Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445-461.doi: 10.3934/mbe.2013.10.445.

    [33]

    T. R. Zhang and W. D. Wang, Hopf bifurcation and bistability of a nutrient-phytoplankton-zooplankton model, Appl. Math. Model., 36 (2012), 6225-6235.doi: 10.1016/j.apm.2012.02.012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return