December  2014, 19(10): 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor

1. 

School of Science and Technology, University of New England, Armidale, NSW 2351

2. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002

Received  March 2013 Revised  May 2013 Published  October 2014

In this paper we consider the diffusive competition model consisting of an invasive species with density $u$ and a native species with density $v$, in a radially symmetric setting with free boundary. We assume that $v$ undergoes diffusion and growth in $\mathbb{R}^N$, and $u$ exists initially in a ball ${r < h(0)}$, but invades into the environment with spreading front ${r = h(t)}$, with $h(t)$ evolving according to the free boundary condition $h'(t) = -\mu u_r(t, h(t))$, where $\mu>0$ is a given constant and $u(t,h(t))=0$. Thus the population range of $u$ is the expanding ball ${r < h(t)}$, while that for $v$ is $\mathbb{R}^N$. In the case that $u$ is a superior competitor (determined by the reaction terms), we show that a spreading-vanishing dichotomy holds, namely, as $t\to\infty$, either $h(t)\to\infty$ and $(u,v)\to (u^*,0)$, or $\lim_{t\to\infty} h(t)<\infty$ and $(u,v)\to (0,v^*)$, where $(u^*,0)$ and $(0, v^*)$ are the semitrivial steady-states of the system. Moreover, when spreading of $u$ happens, some rough estimates of the spreading speed are also given. When $u$ is an inferior competitor, we show that $(u,v)\to (0,v^*)$ as $t\to\infty$, so the invasive species $u$ always vanishes in the long run.
Citation: Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105
References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003).  doi: 10.1002/0470871296.  Google Scholar

[4]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.  doi: 10.1017/S0024610701002289.  Google Scholar

[7]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[8]

Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[9]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[10]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968).   Google Scholar

[11]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[12]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[13]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.  doi: 10.1137/080723715.  Google Scholar

[14]

C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995).   Google Scholar

[16]

M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[17]

J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().   Google Scholar

show all references

References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003).  doi: 10.1002/0470871296.  Google Scholar

[4]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.  doi: 10.1017/S0024610701002289.  Google Scholar

[7]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[8]

Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[9]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[10]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968).   Google Scholar

[11]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).  doi: 10.1142/3302.  Google Scholar

[12]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[13]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.  doi: 10.1137/080723715.  Google Scholar

[14]

C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995).   Google Scholar

[16]

M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[17]

J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().   Google Scholar

[1]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[2]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[3]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[6]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[7]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[8]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[9]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[10]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[11]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[12]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[13]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[14]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[15]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[16]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[17]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[18]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[19]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[20]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (58)

Other articles
by authors

[Back to Top]