-
Previous Article
A periodic Ross-Macdonald model in a patchy environment
- DCDS-B Home
- This Issue
-
Next Article
Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach
The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor
1. | School of Science and Technology, University of New England, Armidale, NSW 2351 |
2. | School of Mathematical Science, Yangzhou University, Yangzhou 225002 |
References:
[1] |
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583.
doi: 10.3934/nhm.2012.7.583. |
[2] |
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.
doi: 10.1137/S0036141099351693. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003).
doi: 10.1002/0470871296. |
[4] |
Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336.
doi: 10.1016/j.jde.2011.02.011. |
[5] |
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.
doi: 10.1137/090771089. |
[6] |
Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.
doi: 10.1017/S0024610701002289. |
[7] |
J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873.
doi: 10.1007/s10884-012-9267-0. |
[8] |
Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145.
doi: 10.1016/0362-546X(95)00142-I. |
[9] |
K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15.
doi: 10.1016/0022-0396(85)90020-8. |
[10] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968).
|
[11] |
G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).
doi: 10.1142/3302. |
[12] |
Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.
doi: 10.1088/0951-7715/20/8/004. |
[13] |
Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.
doi: 10.1137/080723715. |
[14] |
C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992).
|
[15] |
H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995).
|
[16] |
M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365.
doi: 10.1016/j.jde.2014.02.013. |
[17] |
J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., (). Google Scholar |
show all references
References:
[1] |
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583.
doi: 10.3934/nhm.2012.7.583. |
[2] |
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.
doi: 10.1137/S0036141099351693. |
[3] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003).
doi: 10.1002/0470871296. |
[4] |
Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336.
doi: 10.1016/j.jde.2011.02.011. |
[5] |
Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.
doi: 10.1137/090771089. |
[6] |
Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107.
doi: 10.1017/S0024610701002289. |
[7] |
J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873.
doi: 10.1007/s10884-012-9267-0. |
[8] |
Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145.
doi: 10.1016/0362-546X(95)00142-I. |
[9] |
K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15.
doi: 10.1016/0022-0396(85)90020-8. |
[10] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968).
|
[11] |
G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996).
doi: 10.1142/3302. |
[12] |
Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.
doi: 10.1088/0951-7715/20/8/004. |
[13] |
Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217.
doi: 10.1137/080723715. |
[14] |
C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992).
|
[15] |
H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995).
|
[16] |
M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365.
doi: 10.1016/j.jde.2014.02.013. |
[17] |
J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., (). Google Scholar |
[1] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[2] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[3] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[4] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[5] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[6] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[7] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[8] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[9] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[10] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[11] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[12] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[13] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[14] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[15] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[16] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[17] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[18] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[19] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[20] |
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]