\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage

Abstract Related Papers Cited by
  • The dynamics of a reaction-diffusion system for two species of microorganism in an unstirred chemostat with internal storage is studied. It is shown that the diffusion coefficient is a key parameter of determining the asymptotic dynamics, and there exists a threshold diffusion coefficient above which both species become extinct. On the other hand, for diffusion coefficient below the threshold, either one species or both species persist, and in the asymptotic limit, a steady state showing competition exclusion or coexistence is reached.
    Mathematics Subject Classification: 35K51, 35K57, 35B35, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Armstrong and R. McGehee, Competitive exclusion, American Naturalist, 115 (1980), 151-170.doi: 10.1086/283553.

    [2]

    A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture, Mathematics in Microbiology, (eds. M. J. Bazin,), Academic Press, (1983), 77-103.

    [3]

    M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689-733.

    [4]

    M. R. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology, 9 (1973), 264-272.

    [5]

    J. P. Grover, Dynamics of competition among microalgae in variable environments: experimental tests of alternative models, Oikos, 62 (1991), 231-243.

    [6]

    J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model, American Naturalist, 138 (1991), 811-835.

    [7]

    J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, American Naturalist, 178 (2011), 124-148.

    [8]

    J. P. Grover, S.-B. Hsu and F.-B. Wang, Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation, J. Math. Biol., 64 (2012), 713-743.doi: 10.1007/s00285-011-0426-4.

    [9]

    S.-B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.doi: 10.1137/0134064.

    [10]

    S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.doi: 10.1137/070700784.

    [11]

    S.-B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.doi: 10.1137/0132030.

    [12]

    S.-B. Hsu, J.-F. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.doi: 10.1016/j.jde.2009.12.014.

    [13]

    S.-B. Hsu, J.-F. Jiang and F.-B. Wang, Reaction-diffusion equations of two species competing for two complementary resources with internal storage, J. Differential Equations, 251 (2011), 918-940.doi: 10.1016/j.jde.2011.05.003.

    [14]

    S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.doi: 10.1090/S0002-9947-96-01724-2.

    [15]

    S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.doi: 10.1137/0153051.

    [16]

    S.-B. Hsu and F.-B. Wang, On a mathematical model arising from competition of phytoplankton species for a single nutrient with internal storage: steady state analysis, Commun. Pure Appl. Anal., 10 (2011), 1479-1501.doi: 10.3934/cpaa.2011.10.1479.

    [17]

    C. A. Klausmeier, E. Litchman, T. Daufresne and S. A. Levin, Phytoplankton stoichiometry, Ecological Research, 23 (2008), 479-485.

    [18]

    B. S. Leadbeater, The 'Droop Equation'-Michael Droop and the legacy of the 'Cell-Quota Model' of phytoplankton growth, Protist, 157 (2006), 345-358.

    [19]

    H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.

    [20]

    H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35 (1997), 545-556.doi: 10.1007/s002850050065.

    [21]

    H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131.doi: 10.1137/S0036139993245344.

    [22]

    M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol., 71 (2009), 145-161.doi: 10.1007/s11538-008-9357-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return