December  2014, 19(10): 3191-3207. doi: 10.3934/dcdsb.2014.19.3191

A boundary value problem for integrodifference population models with cyclic kernels

1. 

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States

2. 

Department of Mathematics, University of Texas, Austin, TX 78712, United States

Received  July 2013 Revised  December 2013 Published  October 2014

The population dynamics of species with separate growth and dispersal stages can be modeled by a discrete-time, continuous-space integrodifference equation. Many authors have considered the case where the model parameters remain fixed over time, however real environments are constantly in flux. We develop a framework for analyzing the population dynamics when the dispersal parameters change over time in a cyclic fashion. In particular, for the case of $N$ cyclic dispersal kernels modeling movement in the presence of unidirectional flow, we derive a $2N^{th}$-order boundary value problem that can be used to study the linear stability of the associated integrodifference model.
Citation: Jon Jacobsen, Taylor McAdam. A boundary value problem for integrodifference population models with cyclic kernels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3191-3207. doi: 10.3934/dcdsb.2014.19.3191
References:
[1]

C. J. Collins, C. I. Fraser, A. Ashcroft and J. M. Waters, Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: Testing and oceanographic hypothesis, Molecular Ecology, 19 (2010), 4572-4580. doi: 10.1111/j.1365-294X.2010.04842.x.

[2]

R. Dirzo and P. H. Raven, Global state of biodiversity and loss, Annual Review of Environment and Resources, 28 (2003), 137-167.

[3]

N.-E. Fahssi, Polynomial triangles revisited. arXiv:1202.0228v7 [math.CO], (2012).

[4]

D. P. Hardin, P. Takáč and G. F. Webb, Asymptotic properties of a continuous-space discrete-time population model in a random environment, Journal of Mathematical Biology, 26 (1988), 361-374. doi: 10.1007/BF00276367.

[5]

M. P. Hassel, The Dynamics of Arthropod Predator-Prey Systems, no. 13 in Monographs in Population Biology, Princeton University Press, 1978.

[6]

C. M. Herrera, P. Jordano, J. Guitian and A. Traveset, Annual variability in seed production by woody plants and the masting concept: Reassessment of principles and relationship to pollination and seed dispersal, The American Naturalist, 152 (1998), 576-594. doi: 10.1086/286191.

[7]

H. F. Howe and J. Smallwood, Ecology of seed dispersal, Annual Review of Ecology and Systematics, 13 (1982), 201-228. doi: 10.1146/annurev.es.13.110182.001221.

[8]

J. Jacobsen, Y. Jin, and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, preprint. doi: 10.1007/s00285-014-0774-y.

[9]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Mathematical Biosciences, 80 (1986), 109-136. doi: 10.1016/0025-5564(86)90069-6.

[10]

M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, The Netherlands, 1964.

[11]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Review, 47 (2005), 749-772. doi: 10.1137/050636152.

[12]

M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43. doi: 10.1006/tpbi.1995.1020.

[13]

D. Pearce, An economic approach to saving the tropical forests, in Economic Policy Towards the Environment, (ed. D. Helm), Blackwell Publishers, 1991, 239-262.

[14]

N. J. A. Sloane, Online Encyclopedia of Integer Sequences, 2013.

[15]

C. Tudge, Last Animals at the Zoo: How Mass Extinction Can Be Stopped, Island Press, Washington, D.C., 1992.

[16]

R. W. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107-137.

show all references

References:
[1]

C. J. Collins, C. I. Fraser, A. Ashcroft and J. M. Waters, Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: Testing and oceanographic hypothesis, Molecular Ecology, 19 (2010), 4572-4580. doi: 10.1111/j.1365-294X.2010.04842.x.

[2]

R. Dirzo and P. H. Raven, Global state of biodiversity and loss, Annual Review of Environment and Resources, 28 (2003), 137-167.

[3]

N.-E. Fahssi, Polynomial triangles revisited. arXiv:1202.0228v7 [math.CO], (2012).

[4]

D. P. Hardin, P. Takáč and G. F. Webb, Asymptotic properties of a continuous-space discrete-time population model in a random environment, Journal of Mathematical Biology, 26 (1988), 361-374. doi: 10.1007/BF00276367.

[5]

M. P. Hassel, The Dynamics of Arthropod Predator-Prey Systems, no. 13 in Monographs in Population Biology, Princeton University Press, 1978.

[6]

C. M. Herrera, P. Jordano, J. Guitian and A. Traveset, Annual variability in seed production by woody plants and the masting concept: Reassessment of principles and relationship to pollination and seed dispersal, The American Naturalist, 152 (1998), 576-594. doi: 10.1086/286191.

[7]

H. F. Howe and J. Smallwood, Ecology of seed dispersal, Annual Review of Ecology and Systematics, 13 (1982), 201-228. doi: 10.1146/annurev.es.13.110182.001221.

[8]

J. Jacobsen, Y. Jin, and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, preprint. doi: 10.1007/s00285-014-0774-y.

[9]

M. Kot and W. M. Schaffer, Discrete-time growth-dispersal models, Mathematical Biosciences, 80 (1986), 109-136. doi: 10.1016/0025-5564(86)90069-6.

[10]

M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, The Netherlands, 1964.

[11]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Review, 47 (2005), 749-772. doi: 10.1137/050636152.

[12]

M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43. doi: 10.1006/tpbi.1995.1020.

[13]

D. Pearce, An economic approach to saving the tropical forests, in Economic Policy Towards the Environment, (ed. D. Helm), Blackwell Publishers, 1991, 239-262.

[14]

N. J. A. Sloane, Online Encyclopedia of Integer Sequences, 2013.

[15]

C. Tudge, Last Animals at the Zoo: How Mass Extinction Can Be Stopped, Island Press, Washington, D.C., 1992.

[16]

R. W. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107-137.

[1]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[2]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[3]

Getachew K. Befekadu, Panos J. Antsaklis. On noncooperative $n$-player principal eigenvalue games. Journal of Dynamics and Games, 2015, 2 (1) : 51-63. doi: 10.3934/jdg.2015.2.51

[4]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[5]

Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158

[6]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[7]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[8]

Étienne Bernard, Marie Doumic, Pierre Gabriel. Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinetic and Related Models, 2019, 12 (3) : 551-571. doi: 10.3934/krm.2019022

[9]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[10]

Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741

[11]

Adèle Bourgeois, Victor LeBlanc, Frithjof Lutscher. Dynamical stabilization and traveling waves in integrodifference equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3029-3045. doi: 10.3934/dcdss.2020117

[12]

Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004

[13]

Charles Curry, Stephen Marsland, Robert I McLachlan. Principal symmetric space analysis. Journal of Computational Dynamics, 2019, 6 (2) : 251-276. doi: 10.3934/jcd.2019013

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure and Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[16]

Yangyang Xu, Wotao Yin, Stanley Osher. Learning circulant sensing kernels. Inverse Problems and Imaging, 2014, 8 (3) : 901-923. doi: 10.3934/ipi.2014.8.901

[17]

Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665

[18]

Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021007

[19]

Daniel Balagué, José A. Carrillo, Yao Yao. Confinement for repulsive-attractive kernels. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1227-1248. doi: 10.3934/dcdsb.2014.19.1227

[20]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]