\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Persistence and extinction of diffusing populations with two sexes and short reproductive season

Abstract Related Papers Cited by
  • A model is considered for a spatially distributed population of male and female individuals that mate and reproduce only once in their life during a very short reproductive season. Between birth and mating, females and males move by diffusion on a bounded domain $\Omega$. Mating and reproduction is described by a (positively) homogeneous function (of degree one). We identify a basic reproduction number $\mathcal{R}_0$ that acts as a threshold between extinction and persistence. If $\mathcal{R}_0 <1$, the population dies out while it persists (uniformly weakly) if $\mathcal{R}_0 > 1$. $\mathcal{R}_0$ is the cone spectral radius of a bounded homogeneous map.
    Mathematics Subject Classification: Primary: 39A70, 35B99, 92D25; Secondary: 39A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. C. Ashih and W. G. Wilson, Two-sex population dynamics in space: Effects of gestation time on persistence, Theor. Pop. Biol., 60 (2001), 93-106.doi: 10.1006/tpbi.2001.1527.

    [2]

    F. F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc., 8 (1958), 53-75.

    [3]

    R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2003.doi: 10.1002/0470871296.

    [4]

    R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.doi: 10.1017/S0308210506000047.

    [5]

    O. Diekmann, J. A. P. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Princeton, 2013.

    [6]

    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324.

    [7]

    K. P. Hadeler, Pair formation in age-structured populations, Acta Appl. Math., 14 (1989), 91-102.doi: 10.1007/BF00046676.

    [8]

    M. Iannelli, M. Martcheva and F. A. Milner, Gender-Structured Population Models: Mathematical Methods, Numerics, and Simulations, SIAM, Philadelphia, 2005.doi: 10.1137/1.9780898717488.

    [9]

    M. A. Krasnosel'skij, Positive Solutions of Operator Equations, Noordhoff, Groningen 1964.

    [10]

    M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, Positive Linear Systems: The Method of Positive Operators, Heldermann Verlag, Berlin, 1989.

    [11]

    B. Lemmens and R. D. Nussbaum, Nonlinear Perron-Frobenius Theory, Cambridge University Press, Cambridge, 2012.doi: 10.1017/CBO9781139026079.

    [12]

    B. Lemmens and R. D. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc., 141 (2013), 2741-2754.doi: 10.1090/S0002-9939-2013-11520-0.

    [13]

    M. A. Lewis and B. Li, Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models, Bull. Math. Biol., 74 (2012), 2383-2402.doi: 10.1007/s11538-012-9757-6.

    [14]

    J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discr. Cont. Dyn. Sys. (DCDS-A), 8 (2002), 519-562.doi: 10.3934/dcds.2002.8.519.

    [15]

    J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Appl., 7 (2010), 103-143.doi: 10.1007/s11784-010-0010-3.

    [16]

    T. E. X. Miller, A. K. Shaw, B. D. Inouye and M. G. Neubert, Sex-biased dispersal and the speed of two-sex invasions, Amer. Nat., 177 (2011), 549-561.doi: 10.1086/659628.

    [17]

    R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, Fixed Point Theory, (eds. E. Fadell and G. Fournier), Springer, Berlin New York, (1981), 309-331.

    [18]

    R. D. Nussbaum, Eigenvectors of order-preserving linear operators, J. London Math. Soc., 2 (1998), 480-496.doi: 10.1112/S0024610798006425.

    [19]

    H. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann., 138 (1959), 259-286.doi: 10.1007/BF01342907.

    [20]

    H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.

    [21]

    H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, 1995.

    [22]

    H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, AMS, Providence, 2011

    [23]

    H. R. Thieme, Eigenvectors and eigenfunctionals of homogeneous order-preserving maps, preprint, arXiv:1302.3905.

    [24]

    X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.doi: 10.1007/978-0-387-21761-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return