March  2014, 19(2): 353-372. doi: 10.3934/dcdsb.2014.19.353

Isotropic realizability of electric fields around critical points

1. 

Institut de Recherche Mathématique de Rennes & INSA de Rennes, 20 avenue des Buttes de Cöesmes, CS 70839, 35708 Rennes Cedex 7, France

Received  June 2013 Revised  September 2013 Published  February 2014

In this paper we study the isotropic realizability of a given regular gradient field $\nabla u$ as an electric field, namely when $u$ is solution to the equation div$\left(\sigma\nabla u\right)=0$ for some isotropic conductivity $\sigma>0$. The case of a smooth function $u$ without critical point was investigated in [7] thanks to a dynamical system approach which yields a global isotropic realizability result in $\mathbb{R}^d$. The presence of a critical point $x^*$ needs a specific treatment according to the behavior of the gradient flow in the neighborhood of $x^*$. The case where the hessian matrix $\nabla^2 u(x^*)$ is invertible with both positive and negative eigenvalues is the most favorable: the anisotropic realizability is a consequence of Morse's lemma, while the Hadamard-Perron theorem leads us to a characterization of the isotropic realizability around $x^*$ through some boundedness condition involving the laplacian of $u$ along the gradient flow. When the matrix $\nabla^2 u(x^*)$ has $d$ positive eigenvalues or $d$ negative eigenvalues, we get a strong maximum principle under the same boundedness condition. However, when the matrix $\nabla^2 u(x^*)$ is not invertible, the derivation of the isotropic realizability is much more intricate: the Hartman-Wintner theorem gives necessary conditions for the isotropic realizability in dimension two, while the dynamical system approach provides a criterion of non realizability in any dimension. The two methods are illustrated by a two-dimensional and a three-dimensional example.
Citation: Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353
References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 229-256.  Google Scholar

[2]

G. Alessandrini & R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268. doi: 10.1137/S0036141093249080.  Google Scholar

[3]

G. Alessandrini & V. Nesi, Univalent $\sigma$-harmonic mappings, Arch. Rational Mech. Anal., 158 (2001), 155-171. doi: 10.1007/PL00004242.  Google Scholar

[4]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtejn and V. Z. Grines, Dynamical Systems. I, translated from the Russian, D. V. Anosov and V. I. Arnold (eds), Encyclopaedia Math. Sci. 1, Springer-Verlag, Berlin, 1988, pp. 233. doi: 10.1007/978-3-642-61551-1.  Google Scholar

[5]

V. I. Arnold, Ordinary Differential Equations, translated from the third Russian edition by R. Cooke, Springer Textbook, Springer-Verlag, Berlin, 1992, pp. 334.  Google Scholar

[6]

P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J., 50 (2001), 747-757. doi: 10.1512/iumj.2001.50.1832.  Google Scholar

[7]

M. Briane, G. W. Milton & A. Treibergs, Which electric fields are realizable in conducting materials? to appear in Math. Mod. Num. Anal., arXiv: 1301.1613. Google Scholar

[8]

D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001, pp. 517.  Google Scholar

[9]

P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations (I), Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496.  Google Scholar

[10]

M. Hirsch, S. Smale & R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, second edition, Pure and Applied Mathematics (Amsterdam) 60, Elsevier/Academic Press, Amsterdam, 2004, pp. 417.  Google Scholar

[11]

J. Milnor, Morse Theory, based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies 51, Princeton University Press, Princeton, New Jersey, 1963, pp. 153.  Google Scholar

[12]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lecture Notes in Mathematics 1445, Springer-Verlag, Berlin, 1990, pp. 123.  Google Scholar

show all references

References:
[1]

G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 229-256.  Google Scholar

[2]

G. Alessandrini & R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268. doi: 10.1137/S0036141093249080.  Google Scholar

[3]

G. Alessandrini & V. Nesi, Univalent $\sigma$-harmonic mappings, Arch. Rational Mech. Anal., 158 (2001), 155-171. doi: 10.1007/PL00004242.  Google Scholar

[4]

D. V. Anosov, S. K. Aranson, V. I. Arnold, I. U. Bronshtejn and V. Z. Grines, Dynamical Systems. I, translated from the Russian, D. V. Anosov and V. I. Arnold (eds), Encyclopaedia Math. Sci. 1, Springer-Verlag, Berlin, 1988, pp. 233. doi: 10.1007/978-3-642-61551-1.  Google Scholar

[5]

V. I. Arnold, Ordinary Differential Equations, translated from the third Russian edition by R. Cooke, Springer Textbook, Springer-Verlag, Berlin, 1992, pp. 334.  Google Scholar

[6]

P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J., 50 (2001), 747-757. doi: 10.1512/iumj.2001.50.1832.  Google Scholar

[7]

M. Briane, G. W. Milton & A. Treibergs, Which electric fields are realizable in conducting materials? to appear in Math. Mod. Num. Anal., arXiv: 1301.1613. Google Scholar

[8]

D. Gilbarg & N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001, pp. 517.  Google Scholar

[9]

P. Hartman & A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations (I), Amer. J. Math., 75 (1953), 449-476. doi: 10.2307/2372496.  Google Scholar

[10]

M. Hirsch, S. Smale & R. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, second edition, Pure and Applied Mathematics (Amsterdam) 60, Elsevier/Academic Press, Amsterdam, 2004, pp. 417.  Google Scholar

[11]

J. Milnor, Morse Theory, based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies 51, Princeton University Press, Princeton, New Jersey, 1963, pp. 153.  Google Scholar

[12]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lecture Notes in Mathematics 1445, Springer-Verlag, Berlin, 1990, pp. 123.  Google Scholar

[1]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[2]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[3]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[4]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[5]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[6]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[7]

Anna Maria Candela, Giuliana Palmieri. Some abstract critical point theorems and applications. Conference Publications, 2009, 2009 (Special) : 133-142. doi: 10.3934/proc.2009.2009.133

[8]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[9]

Wei Lv, Ruirui Sui. Optimality of piecewise thermal conductivity in a snow-ice thermodynamic system. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 47-57. doi: 10.3934/naco.2015.5.47

[10]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[11]

Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169

[12]

Urszula Foryś, Yuri Kheifetz, Yuri Kogan. Critical-Point Analysis For Three-Variable Cancer Angiogenesis Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 511-525. doi: 10.3934/mbe.2005.2.511

[13]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[14]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[15]

Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065

[16]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system. Communications on Pure & Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

[17]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[18]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[19]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032

[20]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]