# American Institute of Mathematical Sciences

• Previous Article
Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections
• DCDS-B Home
• This Issue
• Next Article
Hyperbolic quenching problem with damping in the micro-electro mechanical system device
March  2014, 19(2): 435-446. doi: 10.3934/dcdsb.2014.19.435

## Volatility in options formulae for general stochastic dynamics

 1 School of Mathematical Sciences, Monash University, Victoria 3800, Australia, Australia 2 School of Mathematical Sciences, Monash University Vic 3800

Received  May 2013 Revised  December 2013 Published  February 2014

It is well-known that the Black-Scholes formula has been derived under the assumption of constant volatility in stocks. In spite of evidence that this parameter is not constant, this formula is widely used by financial markets. This paper addresses the question of whether an alternative model for stock price exists for which the Black-Scholes or similar formulae hold. The results obtained in this paper are very general as no assumptions are made on the dynamics of the model, whether it be the underlying price process, the volatility process or how they relate to each other. We show that if the formula holds for a continuum of strikes and three terminal times then the volatility must be constant. However, when it only holds for finitely many strikes, and three or more maturity times, we obtain a universal bound on the variation of the volatility. This bound yields that the implied volatility is constant when the sequence of strikes increases to cover the entire half-line. This recovers the result for a continuum of strikes by a different approach.
Citation: Kais Hamza, Fima C. Klebaner, Olivia Mah. Volatility in options formulae for general stochastic dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 435-446. doi: 10.3934/dcdsb.2014.19.435
##### References:
 [1] D. Aldous, Stopping times and tightness, Annals of Probability, Volume 6 (1978), 335-340. doi: 10.1214/aop/1176995579.  Google Scholar [2] K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula, Discrete and Continuous Dynamical Systems, Volume 6 (2006), 829-834. doi: 10.3934/dcdsb.2006.6.829.  Google Scholar [3] K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics, Journal of Uncertain Systems, Volume 1 (2007), 246-255. Google Scholar [4] K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula, Stochastics: An International Journal of Probability and Stochastic Processes, Volume 80 (2008), 97-102. doi: 10.1080/17442500701607706.  Google Scholar [5] K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., ().   Google Scholar [6] K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates, Advances in Applied Probability, Volume 37 (2005), 415-434. doi: 10.1239/aap/1118858632.  Google Scholar [7] F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ, Teoriya Veroyatnostei i ee Primeneniya, Volume 58 (2013), 53-80. Google Scholar [8] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar [9] A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153.  doi: 10.1007/BF00538419.  Google Scholar

show all references

##### References:
 [1] D. Aldous, Stopping times and tightness, Annals of Probability, Volume 6 (1978), 335-340. doi: 10.1214/aop/1176995579.  Google Scholar [2] K. Hamza and F. C. Klebaner, On nonexistence of non-constant volatility in the Black-Scholes formula, Discrete and Continuous Dynamical Systems, Volume 6 (2006), 829-834. doi: 10.3934/dcdsb.2006.6.829.  Google Scholar [3] K. Hamza and F. C. Klebaner, On one inverse problem in financial mathematics, Journal of Uncertain Systems, Volume 1 (2007), 246-255. Google Scholar [4] K. Hamza and F. C. Klebaner, On the implicit Black-Scholes formula, Stochastics: An International Journal of Probability and Stochastic Processes, Volume 80 (2008), 97-102. doi: 10.1080/17442500701607706.  Google Scholar [5] K. Hamza and F. C. Klebaner, Martingales in the Itô-Tanaka formula with applications,, Submitted., ().   Google Scholar [6] K. Hamza, S. Jacka and F. C. Klebaner, The EMM conditions in a general model for interest rates, Advances in Applied Probability, Volume 37 (2005), 415-434. doi: 10.1239/aap/1118858632.  Google Scholar [7] F. C. Klebaner and R. Liptser, When a stochastic exponential is a true martingale. Extension of a method of Beneŝ, Teoriya Veroyatnostei i ee Primeneniya, Volume 58 (2013), 53-80. Google Scholar [8] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar [9] A. T. Wang, Generalized Ito's formula and additive functionals of Brownian motion,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 153.  doi: 10.1007/BF00538419.  Google Scholar
 [1] Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829 [2] Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505 [3] Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965 [4] Marjan Uddin, Hazrat Ali. Space-time kernel based numerical method for generalized Black-Scholes equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2905-2915. doi: 10.3934/dcdss.2020221 [5] Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2841-2851. doi: 10.3934/dcdss.2020122 [6] Junkee Jeon, Jehan Oh. (1+2)-dimensional Black-Scholes equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 699-714. doi: 10.3934/cpaa.2020032 [7] Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control & Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036 [8] Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial & Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199 [9] Vinicius Albani, Uri M. Ascher, Xu Yang, Jorge P. Zubelli. Data driven recovery of local volatility surfaces. Inverse Problems & Imaging, 2017, 11 (5) : 799-823. doi: 10.3934/ipi.2017038 [10] Wenxiu Gong, Zuoliang Xu. An alternative tree method for calibration of the local volatility. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020146 [11] Yaxian Xu, Ajay Jasra. Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 2019, 1 (1) : 61-85. doi: 10.3934/fods.2019003 [12] Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 [13] Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017 [14] Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185 [15] Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control & Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026 [16] Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421 [17] Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1699-1729. doi: 10.3934/jimo.2019025 [18] Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021025 [19] Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354 [20] Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial & Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141

2020 Impact Factor: 1.327

## Metrics

• PDF downloads (80)
• HTML views (0)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]