Advanced Search
Article Contents
Article Contents

Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect

Abstract Related Papers Cited by
  • The $\lambda$-Ricker equation has, for certain values of the parameters, an unstable fixed point giving rise to the Allee effect, and an attracting fixed point, the carrying capacity. The $k$-periodic $\lambda$-Ricker equation is studied and parameter intervals are determined for which there exist a $k$-periodic Allee state and a $k$-periodic attracting state.
    Mathematics Subject Classification: 39A30, 92D25.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Allen, J. Fagan, G. Hognas and H. Fagerholm, Population extinction in discrete-time stochastic population models with an Allee effect, J. Difference Eq. & Appl., 11 (2005), 273-293.doi: 10.1080/10236190412331335373.


    R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, volume 11 of Fish and Fisheries Series, Chapman and Hall, London, 1957, reprinted, 1993.


    J. M. Cushing, The Allee effect in age-structured population dynamics, In T. Hallam, L. Gross, and S. Levin, editors, Mathematical Ecology, pages 479-505. World Sci. Publ., Teaneck, NJ, 1988.


    J. M. Cushing, Oscillations in age-structured population models with Allee effect, J. Comput. and Appl. Math., 52 (1994), 71-80.doi: 10.1016/0377-0427(94)90349-2.


    J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Difference Eq. & Appl., 7 (2001), 857-872.doi: 10.1080/10236190108808308.


    J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation, J. Difference Eq. & Appl., 8 (2002), 1119-1120.doi: 10.1080/1023619021000053980.


    H. G. Davis, C. M. Taylor, J. C. Civille and D. R. Strong, An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary, J. Ecology, 92 (2004), 321-327.doi: 10.1111/j.0022-0477.2004.00873.x.


    B. Dennis, Allee effects: Population growth, critical density and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.


    S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.


    S. Elaydi and R. J. Sacker, Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjecture, In S. Elaydi, G. Ladas, B. Aulbach, and O. Dosly, editors, 8th Internat. Conf. on Difference Equations and Appl.(2003), Brno, Czech Republic, pages 113-126. Chapman and Hall, 2005.doi: 10.1201/9781420034905.


    S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Eq. & Appl., 11 (2005), 337-346.doi: 10.1080/10236190412331335418.


    S. Elaydi and R. J. Sacker, Periodic difference equations, population biology and the Cushing-Henson conjectures, Math. Biosciences, 201 (2006), 195-207.doi: 10.1016/j.mbs.2005.12.021.


    S. Elaydi and R. J. Sacker, Population models with Allee effect, A new model, J. Biological Dynamics, 4 (2010), 397-408.doi: 10.1080/17513750903377434.


    H. Eskola and K. Parvinen, On the mechanistic underpinning of discrete-time population models, Theor. Popul. Biol., 72 (2007), 41-51.


    M. S. Fowler and G. D. Ruxton, Population dynamic consequences of Allee effects, J. Theor. Biol., 215 (2002), 39-46.doi: 10.1006/jtbi.2001.2486.


    A. Friedman and A.-A. Yakubu, Fatal disease and demographic allee effect, population persistence and extinction, J. Biological Dynamics, 6 (2012), 495-508.doi: 10.1080/17513758.2011.630489.


    G. R. J. Gaut, K. Goldring, F. Grogan, C. Haskell and R. J. Sacker, Difference equations with the Allee effect and the periodic sigmoid Beverton-Holt equation revisited, J. Biological Dynamics, 6 (2012), 1019-1033.doi: 10.1080/17513758.2012.719039.


    A. J. Harry, C. M. Kent and V. L. Kocic, Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model, J. Biological Dynamics, 6 (2012), 212-234.doi: 10.1080/17513758.2011.552738.


    S. R.-J. Jang, Allee effects in a discrete-time host-parasitoid model, J. Difference Eq. & Appl., 12 (2006), 165-181.doi: 10.1080/10236190500539238.


    V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Eq. and Appl., 11 (2005), 415-422.doi: 10.1080/10236190412331335463.


    R. Kon, A note on attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 10 (2004), 791-793.doi: 10.1080/10236190410001703949.


    R. Kon, Attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 11 (2005), 423-430.doi: 10.1080/10236190412331335472.


    J. Li, B. Song and X. Wang, An extended discrete Ricker population model with Allee effects, J. Difference Eq. & Appl, 13 (2007), 309-321.doi: 10.1080/10236190601079191.


    R. Luís, E. Elaydi and H. Oliveira, Nonautonomous periodic systems with Allee effects, J. Difference Eq. & Appl., 16 (2010), 1179-1196.doi: 10.1080/10236190902794951.


    R. A. Myers, N. J. Barrowman, J. A. Hutchings and A. A. Rosenberg, Population dynamics of exploited fish stocks at low population levels, Science, 269 (1995), 1106-1108.doi: 10.1126/science.269.5227.1106.


    C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, 2002, Springer, Berlin, 2010.doi: 10.1007/978-3-642-14258-1.


    R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92.doi: 10.1080/10236190601008752.


    S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Pop. Biol., 64 (2003), 201-209.doi: 10.1016/S0040-5809(03)00072-8.


    P. A. Stephens and W. J. Sutherland, Vertebrate mating systems, Allee effects and conservation, In M. Apollonio, M. Festa-Bianchet, and D. Mainardi, editors, Vertebrate mating systems, pages 186-213, Singapore, 2000. World Scientific Publishing.doi: 10.1142/9789812793584_0009.


    P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190.doi: 10.2307/3547011.


    C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908.doi: 10.1111/j.1461-0248.2005.00787.x.


    A.-A. Yakubu, Allee effects in discrete-time SIUS epidemic models with infected newborns, J. Difference Eq. & Appl., 13 (2007), 341-356.doi: 10.1080/10236190601079076.


    Y. Yang and R. J. Sacker, Resonance and attenuation in the $n$-periodic Beverton-Holt Equation, J. Difference Eq & Appl., 19 (2013), 1174-1191.


    S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.doi: 10.1016/j.tpb.2004.06.007.

  • 加载中

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint