\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect

Abstract Related Papers Cited by
  • The $\lambda$-Ricker equation has, for certain values of the parameters, an unstable fixed point giving rise to the Allee effect, and an attracting fixed point, the carrying capacity. The $k$-periodic $\lambda$-Ricker equation is studied and parameter intervals are determined for which there exist a $k$-periodic Allee state and a $k$-periodic attracting state.
    Mathematics Subject Classification: 39A30, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Allen, J. Fagan, G. Hognas and H. Fagerholm, Population extinction in discrete-time stochastic population models with an Allee effect, J. Difference Eq. & Appl., 11 (2005), 273-293.doi: 10.1080/10236190412331335373.

    [2]

    R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, volume 11 of Fish and Fisheries Series, Chapman and Hall, London, 1957, reprinted, 1993.

    [3]

    J. M. Cushing, The Allee effect in age-structured population dynamics, In T. Hallam, L. Gross, and S. Levin, editors, Mathematical Ecology, pages 479-505. World Sci. Publ., Teaneck, NJ, 1988.

    [4]

    J. M. Cushing, Oscillations in age-structured population models with Allee effect, J. Comput. and Appl. Math., 52 (1994), 71-80.doi: 10.1016/0377-0427(94)90349-2.

    [5]

    J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Difference Eq. & Appl., 7 (2001), 857-872.doi: 10.1080/10236190108808308.

    [6]

    J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation, J. Difference Eq. & Appl., 8 (2002), 1119-1120.doi: 10.1080/1023619021000053980.

    [7]

    H. G. Davis, C. M. Taylor, J. C. Civille and D. R. Strong, An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary, J. Ecology, 92 (2004), 321-327.doi: 10.1111/j.0022-0477.2004.00873.x.

    [8]

    B. Dennis, Allee effects: Population growth, critical density and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.

    [9]

    S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics. Springer, New York, USA, third edition, 2005.

    [10]

    S. Elaydi and R. J. Sacker, Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing-Henson conjecture, In S. Elaydi, G. Ladas, B. Aulbach, and O. Dosly, editors, 8th Internat. Conf. on Difference Equations and Appl.(2003), Brno, Czech Republic, pages 113-126. Chapman and Hall, 2005.doi: 10.1201/9781420034905.

    [11]

    S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Eq. & Appl., 11 (2005), 337-346.doi: 10.1080/10236190412331335418.

    [12]

    S. Elaydi and R. J. Sacker, Periodic difference equations, population biology and the Cushing-Henson conjectures, Math. Biosciences, 201 (2006), 195-207.doi: 10.1016/j.mbs.2005.12.021.

    [13]

    S. Elaydi and R. J. Sacker, Population models with Allee effect, A new model, J. Biological Dynamics, 4 (2010), 397-408.doi: 10.1080/17513750903377434.

    [14]

    H. Eskola and K. Parvinen, On the mechanistic underpinning of discrete-time population models, Theor. Popul. Biol., 72 (2007), 41-51.

    [15]

    M. S. Fowler and G. D. Ruxton, Population dynamic consequences of Allee effects, J. Theor. Biol., 215 (2002), 39-46.doi: 10.1006/jtbi.2001.2486.

    [16]

    A. Friedman and A.-A. Yakubu, Fatal disease and demographic allee effect, population persistence and extinction, J. Biological Dynamics, 6 (2012), 495-508.doi: 10.1080/17513758.2011.630489.

    [17]

    G. R. J. Gaut, K. Goldring, F. Grogan, C. Haskell and R. J. Sacker, Difference equations with the Allee effect and the periodic sigmoid Beverton-Holt equation revisited, J. Biological Dynamics, 6 (2012), 1019-1033.doi: 10.1080/17513758.2012.719039.

    [18]

    A. J. Harry, C. M. Kent and V. L. Kocic, Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model, J. Biological Dynamics, 6 (2012), 212-234.doi: 10.1080/17513758.2011.552738.

    [19]

    S. R.-J. Jang, Allee effects in a discrete-time host-parasitoid model, J. Difference Eq. & Appl., 12 (2006), 165-181.doi: 10.1080/10236190500539238.

    [20]

    V. L. Kocic, A note on the nonautonomous Beverton-Holt model, J. Difference Eq. and Appl., 11 (2005), 415-422.doi: 10.1080/10236190412331335463.

    [21]

    R. Kon, A note on attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 10 (2004), 791-793.doi: 10.1080/10236190410001703949.

    [22]

    R. Kon, Attenuant cycles of population models with periodic carrying capacity, J. Difference Eq. Appl., 11 (2005), 423-430.doi: 10.1080/10236190412331335472.

    [23]

    J. Li, B. Song and X. Wang, An extended discrete Ricker population model with Allee effects, J. Difference Eq. & Appl, 13 (2007), 309-321.doi: 10.1080/10236190601079191.

    [24]

    R. Luís, E. Elaydi and H. Oliveira, Nonautonomous periodic systems with Allee effects, J. Difference Eq. & Appl., 16 (2010), 1179-1196.doi: 10.1080/10236190902794951.

    [25]

    R. A. Myers, N. J. Barrowman, J. A. Hutchings and A. A. Rosenberg, Population dynamics of exploited fish stocks at low population levels, Science, 269 (1995), 1106-1108.doi: 10.1126/science.269.5227.1106.

    [26]

    C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, 2002, Springer, Berlin, 2010.doi: 10.1007/978-3-642-14258-1.

    [27]

    R. J. Sacker, A Note on periodic Ricker maps, J. Difference Eq. & Appl., 13 (2007), 89-92.doi: 10.1080/10236190601008752.

    [28]

    S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Pop. Biol., 64 (2003), 201-209.doi: 10.1016/S0040-5809(03)00072-8.

    [29]

    P. A. Stephens and W. J. Sutherland, Vertebrate mating systems, Allee effects and conservation, In M. Apollonio, M. Festa-Bianchet, and D. Mainardi, editors, Vertebrate mating systems, pages 186-213, Singapore, 2000. World Scientific Publishing.doi: 10.1142/9789812793584_0009.

    [30]

    P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190.doi: 10.2307/3547011.

    [31]

    C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908.doi: 10.1111/j.1461-0248.2005.00787.x.

    [32]

    A.-A. Yakubu, Allee effects in discrete-time SIUS epidemic models with infected newborns, J. Difference Eq. & Appl., 13 (2007), 341-356.doi: 10.1080/10236190601079076.

    [33]

    Y. Yang and R. J. Sacker, Resonance and attenuation in the $n$-periodic Beverton-Holt Equation, J. Difference Eq & Appl., 19 (2013), 1174-1191.

    [34]

    S. Zhou, Y. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.doi: 10.1016/j.tpb.2004.06.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return