Citation: |
[1] |
V. Berti, C. Giorgi and M. Fabrizio, Well-posedness for solid-liquid phase transitions with a fourth-order nonlinearity, Physica D, 236 (2007), 13-21. |
[2] |
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.doi: 10.1007/978-1-4612-4048-8. |
[3] |
I. Steinbach and M. Apel, Multiphase field model for solid state transformation with elastic strain, Physica D, 217 (2006), 153-160.doi: 10.1016/j.physd.2006.04.001. |
[4] |
I. Singer-Loginova and H. Singer, The phase field technique for modeling multiphase materials, Rep. Prog. Phys., 71 (2008), 106501.doi: 10.1088/0034-4885/71/10/106501. |
[5] |
C. Giorgi, Continuum thermodynamics and phase-field models, Milan J. Math., 77 (2009), 67-100.doi: 10.1007/s00032-009-0101-z. |
[6] |
J. D. van der Waals, Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de densité, Arch. Néerlandaises, 28 (1894-1895), 121-219. |
[7] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102. |
[8] |
M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Mod. Meth. Appl. Sci., 6 (1996), 815-831.doi: 10.1142/S0218202596000341. |
[9] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamical critical phenomena, Rev. Modern Physics, 49 (1977), 435-479.doi: 10.1103/RevModPhys.49.435. |
[10] |
D. Jasnow and J. Viñals, Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8 (1996), 660-669.doi: 10.1063/1.868851. |
[11] |
J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond., A 454 (1998), 2617-2654.doi: 10.1098/rspa.1998.0273. |
[12] |
A. Onuki, Phase transitions of fluids in shear flow, J. Phys.: Condens. Matter, 9 (1997), 6119-6157.doi: 10.1088/0953-8984/9/29/001. |
[13] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Physica D, 214 (2006), 144-156.doi: 10.1016/j.physd.2006.01.002. |
[14] |
M. Fabrizio, C. Giorgi and A. Morro, Phase separation in quasi-incompressible Cahn-Hilliard fluids, Eur. J. Mech., 30 (2011), 281-287.doi: 10.1016/j.euromechflu.2010.12.003. |
[15] |
I. Müller, Thermodynamics of mixtures of fluids, J. Mécanique, 14 (1975), 267-303. |
[16] |
A. Morro, Governing equations in non-isothermal diffusion, Int. J. Non-Lin. Mech., 55 (2013), 90-97.doi: 10.1016/j.ijnonlinmec.2013.04.010. |
[17] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.doi: 10.1016/0167-2789(95)00173-5. |
[18] |
J. D. Clayton and J. Knap, A phase field model of deformation twinning: Nonlinear theory and numerical simulations, Physica D, 240 (2011), 841-858.doi: 10.1016/j.physd.2010.12.012. |
[19] |
E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D, 68 (1993), 326-343.doi: 10.1016/0167-2789(93)90128-N. |
[20] |
C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Physica D, 240 (2011), 629-635.doi: 10.1016/j.physd.2010.11.014. |
[21] |
C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.doi: 10.1137/S0036141094267662. |
[22] |
M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions, Int. J. Engng Sci., 44 (2006), 529-539.doi: 10.1016/j.ijengsci.2006.02.006. |
[23] |
M. Fabrizio, C. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Meth. Appl. Sci., 31 (2008), 627-653.doi: 10.1002/mma.930. |