Citation: |
[1] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.doi: 10.1137/S0036141000376086. |
[2] |
K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00, A MATLAB Package for Bifurcation Analysis of Delay Differential Equations, Tech. rep., Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2001. |
[3] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. |
[4] |
X. Z. He, Stability and delays in a predator-prey system, J. Math. Anal. Appl., 198 (1996), 355-370.doi: 10.1006/jmaa.1996.0087. |
[5] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. |
[6] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd ed., Springer, New York, 1998. |
[7] |
J. P. LaSalle, The Stability of Dynamical Systems, Reg. Conf. Ser. Appl. Math., SIAM, Philadelphia, 1976. |
[8] |
M. Y. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull. Math. Bio., 73 (2011), 1774-1793.doi: 10.1007/s11538-010-9591-7. |
[9] |
M. Y. Li, X. Lin and H. Wang, Global Hopf branches of a delayed HTLV-1 infection model: Coexistence of multiple attracting limit cycles, Canadian Appl. Math. Quarterly, 20 (2012), 39-50. |
[10] |
R. M. May, Time delays versus stability in population models with two or three trophic levels, Ecology, 54 (1973), 315-325.doi: 10.2307/1934339. |
[11] |
H. Shu, L, Wang and J. Wu, Global dynamics of Nicholson's blow y equation revisited: Onset and termination of nonlinear oscillations, Journal of Differential Equations, 255 (2013), 2565-2586.doi: 10.1016/j.jde.2013.06.020. |
[12] |
Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.doi: 10.1016/j.jmaa.2004.06.056. |
[13] |
H. Wang, J. D. Nagy, O. Gilg and Y. Kuang, The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles, Math. Biosci., 221 (2009), 1-10.doi: 10.1016/j.mbs.2009.06.004. |