Citation: |
[1] |
S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays, Nonlinear Anal., 69 (2008), 786-795.doi: 10.1016/j.na.2008.02.067. |
[2] |
H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects, Nonlinear Anal., 68 (2008), 3186-3200.doi: 10.1016/j.na.2007.03.024. |
[3] |
H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays, Phys. Lett. A, 306 (2003), 313-325.doi: 10.1016/S0375-9601(02)01608-0. |
[4] |
B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays, Appl. Math. Comput., 219 (2012), 2506-2520.doi: 10.1016/j.amc.2012.08.086. |
[5] |
B. Lisena, Exponential stability of Hopfield neural networks with impulses, Nonlinear Anal. Real World Appl., 12 (2011), 1923-1930.doi: 10.1016/j.nonrwa.2010.12.008. |
[6] |
B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks, Nonlinear Anal., 74 (2011), 4511-4519.doi: 10.1016/j.na.2011.04.015. |
[7] |
B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients, Mediterr. J. Math., 10 (2013), 1717-1730.doi: 10.1007/s00009-013-0261-5. |
[8] |
B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays, Phys. Lett. A, 349 (2006), 474-483. |
[9] |
H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays, Chaos Solitons Fractals, 29 (2006), 1137-1141.doi: 10.1016/j.chaos.2005.08.120. |
[10] |
S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays, Neurocomputing, 71 (2008), 1705-1713.doi: 10.1016/j.neucom.2007.03.010. |
[11] |
S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput., 135 (2003), 17-38.doi: 10.1016/S0096-3003(01)00299-5. |
[12] |
Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays, Appl. Math. Comput., 217 (2011), 6893-6899.doi: 10.1016/j.amc.2011.01.068. |
[13] |
I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays, Comput. Math. Appl., 59 (2010), 3508-3515.doi: 10.1016/j.camwa.2010.03.043. |
[14] |
M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays, Appl. Math. Model., 33 (2009), 373-385.doi: 10.1016/j.apm.2007.11.010. |
[15] |
H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses, Results Math., 58 (2010), 191-204.doi: 10.1007/s00025-010-0048-y. |
[16] |
Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks, Math. Comput. Modelling, 48 (2008), 101-113.doi: 10.1016/j.mcm.2007.08.010. |