-
Previous Article
Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies
- DCDS-B Home
- This Issue
-
Next Article
Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model
Average criteria for periodic neural networks with delay
1. | Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy |
References:
[1] |
S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays, Nonlinear Anal., 69 (2008), 786-795.
doi: 10.1016/j.na.2008.02.067. |
[2] |
H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects, Nonlinear Anal., 68 (2008), 3186-3200.
doi: 10.1016/j.na.2007.03.024. |
[3] |
H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays, Phys. Lett. A, 306 (2003), 313-325.
doi: 10.1016/S0375-9601(02)01608-0. |
[4] |
B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays, Appl. Math. Comput., 219 (2012), 2506-2520.
doi: 10.1016/j.amc.2012.08.086. |
[5] |
B. Lisena, Exponential stability of Hopfield neural networks with impulses, Nonlinear Anal. Real World Appl., 12 (2011), 1923-1930.
doi: 10.1016/j.nonrwa.2010.12.008. |
[6] |
B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks, Nonlinear Anal., 74 (2011), 4511-4519.
doi: 10.1016/j.na.2011.04.015. |
[7] |
B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients, Mediterr. J. Math., 10 (2013), 1717-1730.
doi: 10.1007/s00009-013-0261-5. |
[8] |
B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays, Phys. Lett. A, 349 (2006), 474-483. |
[9] |
H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays, Chaos Solitons Fractals, 29 (2006), 1137-1141.
doi: 10.1016/j.chaos.2005.08.120. |
[10] |
S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays, Neurocomputing, 71 (2008), 1705-1713.
doi: 10.1016/j.neucom.2007.03.010. |
[11] |
S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput., 135 (2003), 17-38.
doi: 10.1016/S0096-3003(01)00299-5. |
[12] |
Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays, Appl. Math. Comput., 217 (2011), 6893-6899.
doi: 10.1016/j.amc.2011.01.068. |
[13] |
I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays, Comput. Math. Appl., 59 (2010), 3508-3515.
doi: 10.1016/j.camwa.2010.03.043. |
[14] |
M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays, Appl. Math. Model., 33 (2009), 373-385.
doi: 10.1016/j.apm.2007.11.010. |
[15] |
H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses, Results Math., 58 (2010), 191-204.
doi: 10.1007/s00025-010-0048-y. |
[16] |
Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks, Math. Comput. Modelling, 48 (2008), 101-113.
doi: 10.1016/j.mcm.2007.08.010. |
show all references
References:
[1] |
S. Ahmad and I. M. Stamova, Global exponential stability for impulsive cellular neural networks with time-delays, Nonlinear Anal., 69 (2008), 786-795.
doi: 10.1016/j.na.2008.02.067. |
[2] |
H. Gu, H. Jiang and Z. Teng, Stability and periodicity in high-order neural networks with impulsive effects, Nonlinear Anal., 68 (2008), 3186-3200.
doi: 10.1016/j.na.2007.03.024. |
[3] |
H. Jiang, Z. Li and Z. Teng, Boundedness and stability for nonautonomous cellular networks with delays, Phys. Lett. A, 306 (2003), 313-325.
doi: 10.1016/S0375-9601(02)01608-0. |
[4] |
B. Li and D. Xu, Existence and exponential stability of periodic solution for impulsive Cohen-Grossberg neural networks with time varying delays, Appl. Math. Comput., 219 (2012), 2506-2520.
doi: 10.1016/j.amc.2012.08.086. |
[5] |
B. Lisena, Exponential stability of Hopfield neural networks with impulses, Nonlinear Anal. Real World Appl., 12 (2011), 1923-1930.
doi: 10.1016/j.nonrwa.2010.12.008. |
[6] |
B. Lisena, Dynamical behavior of impulsive and periodic Cohen-Grossberg neural networks, Nonlinear Anal., 74 (2011), 4511-4519.
doi: 10.1016/j.na.2011.04.015. |
[7] |
B. Lisena, Asymptotic properties in a delay differential inequality with periodic coefficients, Mediterr. J. Math., 10 (2013), 1717-1730.
doi: 10.1007/s00009-013-0261-5. |
[8] |
B. Liu and L. Huang, Existence and exponential stability of periodic solutions for cellular neural networks with time-varying delays, Phys. Lett. A, 349 (2006), 474-483. |
[9] |
H. Liu and L. Wang, Globally exponential stability and periodic solutions of CNNs with variable coefficients and variable delays, Chaos Solitons Fractals, 29 (2006), 1137-1141.
doi: 10.1016/j.chaos.2005.08.120. |
[10] |
S. Long and D. Xu, Delay-dependent stability analysis for impulsive neural networks with time varying delays, Neurocomputing, 71 (2008), 1705-1713.
doi: 10.1016/j.neucom.2007.03.010. |
[11] |
S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. Math. Comput., 135 (2003), 17-38.
doi: 10.1016/S0096-3003(01)00299-5. |
[12] |
Y. Shao, Exponential stability of periodic neural networks with impulsive effects and time-varying delays, Appl. Math. Comput., 217 (2011), 6893-6899.
doi: 10.1016/j.amc.2011.01.068. |
[13] |
I. M. Stamova and R. Ilarionov, On global exponential stability for impulsive cellular neural networks with time-varying delays, Comput. Math. Appl., 59 (2010), 3508-3515.
doi: 10.1016/j.camwa.2010.03.043. |
[14] |
M. Tan and Y. Tan, Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays, Appl. Math. Model., 33 (2009), 373-385.
doi: 10.1016/j.apm.2007.11.010. |
[15] |
H. Wang, C. Li and H. Xu, Existence and global exponential stability of periodic solution of cellular neural networks with delay and impulses, Results Math., 58 (2010), 191-204.
doi: 10.1007/s00025-010-0048-y. |
[16] |
Z. Yuan and L. Yuan, Existence and global convergence of periodic solution of delayed neural networks, Math. Comput. Modelling, 48 (2008), 101-113.
doi: 10.1016/j.mcm.2007.08.010. |
[1] |
Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517 |
[2] |
Muhammet Mert Ketencigil, Ozlem Faydasicok, Sabri Arik. Novel criteria for robust stability of Cohen-Grossberg neural networks with multiple time delays. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022081 |
[3] |
Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022035 |
[4] |
Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021040 |
[5] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[6] |
Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325 |
[7] |
Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505 |
[8] |
Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 |
[9] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[10] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29 (5) : 2973-2985. doi: 10.3934/era.2021022 |
[11] |
Pierdomenico Pepe. A nonlinear version of Halanay's inequality for the uniform convergence to the origin. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021045 |
[12] |
Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1429-1446. doi: 10.3934/dcdss.2020370 |
[13] |
István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 |
[14] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[15] |
István Győri, László Horváth. Sharp estimation for the solutions of delay differential and Halanay type inequalities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3211-3242. doi: 10.3934/dcds.2017137 |
[16] |
Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248 |
[17] |
Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357 |
[18] |
Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142 |
[19] |
Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397 |
[20] |
Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]