\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple existence of traveling waves of a free boundary problem describing cell motility

Abstract Related Papers Cited by
  • In this paper we consider a free boundary problem describing cell motility, which is a simple model of Umeda (see [11]). This model includes a non-local term and the interface equation with curvature. We prove that there exist at least two traveling waves of the model. First, we rewrite the problem into a fixed-point problem for a continuous map $T$ and then show that there exist at least two fixed points for the map $T$.
    Mathematics Subject Classification: Primary: 35C07, 35R35; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996), 205-220.doi: 10.1016/0167-2789(96)00042-5.

    [2]

    Y. S. Choi, J. Lee and R. Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model, J. Math. Biol., 49 (2004), 310-328.doi: 10.1007/s00285-003-0255-1.

    [3]

    Y. S. Choi, P. Groulxb and R. Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model, Nonlinear Analysis: Real World Appl., 6 (2005), 874-898.doi: 10.1016/j.nonrwa.2004.11.005.

    [4]

    Y. S. Choi and R. Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem, Trans. A. M. S., 361 (2009), 4027-4044.doi: 10.1090/S0002-9947-09-04562-0.

    [5]

    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1998.doi: 10.1007/978-3-642-61798-0.

    [6]

    J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagation wave segments in wave front interaction model, Physica D, 239 (2010), 230-239.doi: 10.1016/j.physd.2009.11.001.

    [7]

    A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells, A quantitative analysis. Biophys. J., 83 (2002), 1237-1258.doi: 10.1016/S0006-3495(02)73897-6.

    [8]

    A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models, Biophys J., 101 (2011), 545-553.

    [9]

    A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod, Bio. J., 97 (2009), 1853-1863.

    [10]

    A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell, J. Stat. Phys., 110 (2003), 1169-1189.

    [11]

    H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion, Differential and Integral Equations, 25 (2012), 93-116.

    [12]

    J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium, J. Cell Biol., 129 (1995), 1275-1286.doi: 10.1083/jcb.129.5.1275.

    [13]

    V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagation of chemical waves segments, Phys. Rev. Lett., 94 (2005), 068302.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return