May  2014, 19(3): 789-799. doi: 10.3934/dcdsb.2014.19.789

Multiple existence of traveling waves of a free boundary problem describing cell motility

1. 

Meiji Institute of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan

2. 

School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525

Received  August 2013 Revised  December 2013 Published  February 2014

In this paper we consider a free boundary problem describing cell motility, which is a simple model of Umeda (see [11]). This model includes a non-local term and the interface equation with curvature. We prove that there exist at least two traveling waves of the model. First, we rewrite the problem into a fixed-point problem for a continuous map $T$ and then show that there exist at least two fixed points for the map $T$.
Citation: Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789
References:
[1]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996), 205-220. doi: 10.1016/0167-2789(96)00042-5.  Google Scholar

[2]

Y. S. Choi, J. Lee and R. Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model, J. Math. Biol., 49 (2004), 310-328. doi: 10.1007/s00285-003-0255-1.  Google Scholar

[3]

Y. S. Choi, P. Groulxb and R. Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model, Nonlinear Analysis: Real World Appl., 6 (2005), 874-898. doi: 10.1016/j.nonrwa.2004.11.005.  Google Scholar

[4]

Y. S. Choi and R. Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem, Trans. A. M. S., 361 (2009), 4027-4044. doi: 10.1090/S0002-9947-09-04562-0.  Google Scholar

[5]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1998. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagation wave segments in wave front interaction model, Physica D, 239 (2010), 230-239. doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[7]

A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells, A quantitative analysis. Biophys. J., 83 (2002), 1237-1258. doi: 10.1016/S0006-3495(02)73897-6.  Google Scholar

[8]

A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models, Biophys J., 101 (2011), 545-553. Google Scholar

[9]

A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod, Bio. J., 97 (2009), 1853-1863. Google Scholar

[10]

A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell, J. Stat. Phys., 110 (2003), 1169-1189. Google Scholar

[11]

H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion, Differential and Integral Equations, 25 (2012), 93-116.  Google Scholar

[12]

J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium, J. Cell Biol., 129 (1995), 1275-1286. doi: 10.1083/jcb.129.5.1275.  Google Scholar

[13]

V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagation of chemical waves segments, Phys. Rev. Lett., 94 (2005), 068302. Google Scholar

show all references

References:
[1]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996), 205-220. doi: 10.1016/0167-2789(96)00042-5.  Google Scholar

[2]

Y. S. Choi, J. Lee and R. Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model, J. Math. Biol., 49 (2004), 310-328. doi: 10.1007/s00285-003-0255-1.  Google Scholar

[3]

Y. S. Choi, P. Groulxb and R. Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model, Nonlinear Analysis: Real World Appl., 6 (2005), 874-898. doi: 10.1016/j.nonrwa.2004.11.005.  Google Scholar

[4]

Y. S. Choi and R. Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem, Trans. A. M. S., 361 (2009), 4027-4044. doi: 10.1090/S0002-9947-09-04562-0.  Google Scholar

[5]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1998. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[6]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagation wave segments in wave front interaction model, Physica D, 239 (2010), 230-239. doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[7]

A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells, A quantitative analysis. Biophys. J., 83 (2002), 1237-1258. doi: 10.1016/S0006-3495(02)73897-6.  Google Scholar

[8]

A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models, Biophys J., 101 (2011), 545-553. Google Scholar

[9]

A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod, Bio. J., 97 (2009), 1853-1863. Google Scholar

[10]

A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell, J. Stat. Phys., 110 (2003), 1169-1189. Google Scholar

[11]

H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion, Differential and Integral Equations, 25 (2012), 93-116.  Google Scholar

[12]

J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium, J. Cell Biol., 129 (1995), 1275-1286. doi: 10.1083/jcb.129.5.1275.  Google Scholar

[13]

V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagation of chemical waves segments, Phys. Rev. Lett., 94 (2005), 068302. Google Scholar

[1]

Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315

[2]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[3]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[4]

Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989

[5]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[6]

Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037

[7]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1797-1809. doi: 10.3934/dcdsb.2021028

[8]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

[9]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[10]

Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386

[11]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[12]

Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297

[13]

Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233

[14]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[15]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[16]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239

[17]

Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365

[18]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[19]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[20]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]