
Previous Article
Two novel decoupling algorithms for the steady StokesDarcy model based on twogrid discretizations
 DCDSB Home
 This Issue

Next Article
Traveling wave solutions of competitive models with free boundaries
The secondorder twoscale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials
1.  Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China 
2.  LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China, China 
References:
[1] 
S. T. Liu and Y. C. Zhang, Multiscale analysis method for thermal conductivity of composite material with radiation, Multidiscipline Modeling in Mat. and Str., 2 (2006), 327344. 
[2] 
G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Model.Sim., 7 (2008), 11481170. doi: 10.1137/080714737. 
[3] 
N. S. Bakhvalov, Averaging of the heat transfer process in periodic media with radiative, Differ. Uraun., 17 (1981), 17651773. 
[4] 
T. Tiihonen, StefanBoltzmann radiation on nonconvex surfaces, Math. Method. Appl. Sci., 20 (1997), 4757. doi: 10.1002/(SICI)10991476(19970110)20:1<47::AIDMMA847>3.0.CO;2B. 
[5] 
N. Qatanani, Analysis of the heat equation with nonlocal radiation terms in a nonconvex diffuse and grey surfaces, Eur. J. Sci. Res., 15 (2006), 245254. 
[6] 
K. Daryabeigi, Analysis and testing of high temperature fibrous insulation for reusable launch vehicles, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 1114, (1999), Reno, NV. doi: 10.2514/6.19991044. 
[7] 
L. J. Gibson and M. F. Ashby, Cellular Solids:Structure and Properties, second edition, Cambridge University Press, 1997. 
[8] 
K. El Ganaoui, Homogénéisation de Modéles de Transferts Thermiques et Radiatifs: Application au Coeur des Réacteurs A Caloporteur Gaz, Ph.D thesis, Ecole Polytechnique, 2006. 
[9] 
K. Terada, M. Kurumatani, T. Ushida and N. Kikuchi, A method of twoscale thermomechanical analysis for porous solids with microscale heat transfer, Comp. Mech., 46 (2010), 269285. doi: 10.1007/s0046600904009. 
[10] 
F. Su, J. Z. Cui and Z. Xu, A twoorder and twoscale computation method for nonselfadjoint elliptic problems with rapidly oscillatory coefficients, Appl. Math. MechEngl., 30 (2009), 15791588. doi: 10.1007/s104830091209z. 
[11] 
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, NorthHolland, Amsterdam, 1978. 
[12] 
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, NorthHolland, Amsterdam, 1992. 
[13] 
L. Q. Cao, J. Z. Cui and D. C. Zhu, Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equation with oscillating coefficients over general convex domains, SIAM J.Numer.Anal., 40 (2002), 543577. doi: 10.1137/S0036142900376110. 
[14] 
Z. Q. Yang, J. Z. Cui, Y. F. Nie and Q. Ma, The secondorder twoscale method for heat transfer performances of periodic porous materials with interior surface radiation, CMES: Comp. Model. Eng., 88 (2012), 419442. 
[15] 
J. Z. Cui, T. M. Shin and Y. L. Wang, Twoscale analysis method for bodies with small periodic configurations, Struct. Eng. Mech., 7 (1999), 601614. doi: 10.12989/sem.1999.7.6.601. 
[16] 
A. A. Amosov, Semidiscrete and asymptotic approximations for the nonstationary radiativeconductive heat transfer problem in a periodic system of grey heat shields, J. Math. Sci., 176 (2011), 361408. doi: 10.1007/s1095801103992. 
[17] 
A. A. Amosov, Nonstationary radiativeconductive heat transfer problem in a periodic system of grey heat shields, J. Math. Sci., 169 (2010), 145. doi: 10.1007/s1095801000374. 
[18] 
J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications II, SpringerVerlag, Berlin, 1972. 
[19] 
G. Allaire and Z. Habibi, Homogenization of a conductive, convective and radiative heat transfer problem in a heterogeneous domain, SIAM J. Math. Anal., 45 (2013), 11361178. doi: 10.1137/110849821. 
[20] 
L. Q. Cao and J. Z. Cui, The twoscale asymptotic analysis for elastic structures of composites materials with only including entirely basic configuration, Acta Math. Appl. Sin., 22 (1999), 3846 (in Chinese). 
[21] 
W. Allegretta, L. Q. Cao and Y. P. Lin, Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients, Discret Contin. Dyn. S., 20 (2008), 543576. 
[22] 
L. Q. Cao, Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains, Numer. Math., 103 (2006), 1145. doi: 10.1007/s0021100506684. 
show all references
References:
[1] 
S. T. Liu and Y. C. Zhang, Multiscale analysis method for thermal conductivity of composite material with radiation, Multidiscipline Modeling in Mat. and Str., 2 (2006), 327344. 
[2] 
G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Model.Sim., 7 (2008), 11481170. doi: 10.1137/080714737. 
[3] 
N. S. Bakhvalov, Averaging of the heat transfer process in periodic media with radiative, Differ. Uraun., 17 (1981), 17651773. 
[4] 
T. Tiihonen, StefanBoltzmann radiation on nonconvex surfaces, Math. Method. Appl. Sci., 20 (1997), 4757. doi: 10.1002/(SICI)10991476(19970110)20:1<47::AIDMMA847>3.0.CO;2B. 
[5] 
N. Qatanani, Analysis of the heat equation with nonlocal radiation terms in a nonconvex diffuse and grey surfaces, Eur. J. Sci. Res., 15 (2006), 245254. 
[6] 
K. Daryabeigi, Analysis and testing of high temperature fibrous insulation for reusable launch vehicles, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 1114, (1999), Reno, NV. doi: 10.2514/6.19991044. 
[7] 
L. J. Gibson and M. F. Ashby, Cellular Solids:Structure and Properties, second edition, Cambridge University Press, 1997. 
[8] 
K. El Ganaoui, Homogénéisation de Modéles de Transferts Thermiques et Radiatifs: Application au Coeur des Réacteurs A Caloporteur Gaz, Ph.D thesis, Ecole Polytechnique, 2006. 
[9] 
K. Terada, M. Kurumatani, T. Ushida and N. Kikuchi, A method of twoscale thermomechanical analysis for porous solids with microscale heat transfer, Comp. Mech., 46 (2010), 269285. doi: 10.1007/s0046600904009. 
[10] 
F. Su, J. Z. Cui and Z. Xu, A twoorder and twoscale computation method for nonselfadjoint elliptic problems with rapidly oscillatory coefficients, Appl. Math. MechEngl., 30 (2009), 15791588. doi: 10.1007/s104830091209z. 
[11] 
A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structure, NorthHolland, Amsterdam, 1978. 
[12] 
O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, NorthHolland, Amsterdam, 1992. 
[13] 
L. Q. Cao, J. Z. Cui and D. C. Zhu, Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equation with oscillating coefficients over general convex domains, SIAM J.Numer.Anal., 40 (2002), 543577. doi: 10.1137/S0036142900376110. 
[14] 
Z. Q. Yang, J. Z. Cui, Y. F. Nie and Q. Ma, The secondorder twoscale method for heat transfer performances of periodic porous materials with interior surface radiation, CMES: Comp. Model. Eng., 88 (2012), 419442. 
[15] 
J. Z. Cui, T. M. Shin and Y. L. Wang, Twoscale analysis method for bodies with small periodic configurations, Struct. Eng. Mech., 7 (1999), 601614. doi: 10.12989/sem.1999.7.6.601. 
[16] 
A. A. Amosov, Semidiscrete and asymptotic approximations for the nonstationary radiativeconductive heat transfer problem in a periodic system of grey heat shields, J. Math. Sci., 176 (2011), 361408. doi: 10.1007/s1095801103992. 
[17] 
A. A. Amosov, Nonstationary radiativeconductive heat transfer problem in a periodic system of grey heat shields, J. Math. Sci., 169 (2010), 145. doi: 10.1007/s1095801000374. 
[18] 
J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications II, SpringerVerlag, Berlin, 1972. 
[19] 
G. Allaire and Z. Habibi, Homogenization of a conductive, convective and radiative heat transfer problem in a heterogeneous domain, SIAM J. Math. Anal., 45 (2013), 11361178. doi: 10.1137/110849821. 
[20] 
L. Q. Cao and J. Z. Cui, The twoscale asymptotic analysis for elastic structures of composites materials with only including entirely basic configuration, Acta Math. Appl. Sin., 22 (1999), 3846 (in Chinese). 
[21] 
W. Allegretta, L. Q. Cao and Y. P. Lin, Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients, Discret Contin. Dyn. S., 20 (2008), 543576. 
[22] 
L. Q. Cao, Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains, Numer. Math., 103 (2006), 1145. doi: 10.1007/s0021100506684. 
[1] 
Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductiveradiative heat transfer problem. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 136. doi: 10.3934/dcdsb.2013.18.1 
[2] 
Erik Kropat, Silja MeyerNieberg, GerhardWilhelm Weber. Bridging the gap between variational homogenization results and twoscale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223250. doi: 10.3934/naco.2017016 
[3] 
Alexander Mielke, Sina Reichelt, Marita Thomas. Twoscale homogenization of nonlinear reactiondiffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353382. doi: 10.3934/nhm.2014.9.353 
[4] 
Robert E. Miller. Homogenization of timedependent systems with KelvinVoigt damping by twoscale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485502. doi: 10.3934/dcds.1995.1.485 
[5] 
Alexandre Mouton. Twoscale semiLagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251274. doi: 10.3934/krm.2009.2.251 
[6] 
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic twoscale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227254. doi: 10.3934/nhm.2022004 
[7] 
Qiong Meng, X. H. Tang. Solutions of a secondorder Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 10531067. doi: 10.3934/cpaa.2010.9.1053 
[8] 
Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous secondorder differential equations. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 477482. doi: 10.3934/dcdsb.2017022 
[9] 
Xuan Wu, Huafeng Xiao. Periodic solutions for a class of secondorder differential delay equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 42534269. doi: 10.3934/cpaa.2021159 
[10] 
Yaqing Liu, Liancun Zheng. Secondorder slip flow of a generalized OldroydB fluid through porous medium. Discrete and Continuous Dynamical Systems  S, 2016, 9 (6) : 20312046. doi: 10.3934/dcdss.2016083 
[11] 
Liupeng Wang, Yunqing Huang. Error estimates for secondorder SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 17351752. doi: 10.3934/era.2020089 
[12] 
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 11111125. doi: 10.3934/jimo.2015.11.1111 
[13] 
Fang Liu, Aihui Zhou. Localizations and parallelizations for twoscale finite element discretizations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 757773. doi: 10.3934/cpaa.2007.6.757 
[14] 
Aurore Back, Emmanuel Frénod. Geometric twoscale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems  S, 2015, 8 (1) : 223241. doi: 10.3934/dcdss.2015.8.223 
[15] 
Alexandre Mouton. Expansion of a singularly perturbed equation with a twoscale converging convection term. Discrete and Continuous Dynamical Systems  S, 2016, 9 (5) : 14471473. doi: 10.3934/dcdss.2016058 
[16] 
Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. TwoScale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems  S, 2015, 8 (1) : 151168. doi: 10.3934/dcdss.2015.8.151 
[17] 
Jiyu Zhong, Shengfu Deng. Two codimensiontwo bifurcations of a secondorder difference equation from macroeconomics. Discrete and Continuous Dynamical Systems  B, 2018, 23 (4) : 15811600. doi: 10.3934/dcdsb.2018062 
[18] 
Ying Lv, YanFang Xue, ChunLei Tang. Ground state homoclinic orbits for a class of asymptotically periodic secondorder Hamiltonian systems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (3) : 16271652. doi: 10.3934/dcdsb.2020176 
[19] 
Yan Liu, Fei Guo. Multiplicity of periodic solutions for secondorder perturbed Hamiltonian systems with local superquadratic conditions. Communications on Pure and Applied Analysis, 2022, 21 (10) : 32473261. doi: 10.3934/cpaa.2022098 
[20] 
XiDe Zhu, LiPing Pang, GuiHua Lin. Two approaches for solving mathematical programs with secondorder cone complementarity constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 951968. doi: 10.3934/jimo.2015.11.951 
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]