\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On an ODE-PDE coupling model of the mitochondrial swelling process

Abstract Related Papers Cited by
  • Mitochondrial swelling has huge impact to multicellular organisms since it triggers apoptosis, the programmed cell death. In this paper we present a new mathematical model of this phenomenon. As a novelty it includes spatial effects, which are of great importance for the in vivo process. Our model considers three mitochondrial subpopulations varying in the degree of swelling. The evolution of these groups is dependent on the present calcium concentration and is described by a system of ODEs, whereas the calcium propagation is modeled by a reaction-diffusion equation taking into account spatial effects. We analyze the derived model with respect to existence and long-time behavior of solutions and obtain a complete mathematical classification of the swelling process.
    Mathematics Subject Classification: Primary: 35B40, 35K57, 37N25; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition, Garland Science, 2007.

    [2]

    M. A. Aon, S. Cortassa, E. Marban and B. O'Rourke, Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes, Journal of Biological Chemistry, 278 (2003), 44735-44744.doi: 10.1074/jbc.M302673200.

    [3]

    M. A. Aon, S. Cortassa and B. O'Rourke, Percolation and criticality in a mitochondrial network, Proceedings of the National Academy of Sciences of USA, 101 (2004), 4447-4452.doi: 10.1073/pnas.0307156101.

    [4]

    A. Babin and M. Vishik, Attractors of Evolution Equations, North Holland, 1992.

    [5]

    S. Baranov, I. Stavrovskaya, A. Brown, A. Tyryshkin and B. Kristal, Kinetic model for $Ca^{2+}$-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms, Journal of Biological Chemistry, 283 (2008), 665-676.

    [6]

    H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, vol. 5, North Holland, 1973.

    [7]

    H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

    [8]

    G. Calamita, D. Ferri, P. Gena, G. Liquori, A. Cavalier, D. Thomas and M. Svelto, The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water, Journal of Biological Chemistry, 280 (2005), 17149-17153.doi: 10.1074/jbc.C400595200.

    [9]

    V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.

    [10]

    S. EisenhoferA Coupled System of Ordinary and Partial Differential Equations Modeling the Swelling of Mitochondria, PhD Thesis, 137.

    [11]

    S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling, BMC Research Notes, 3 (2010), p67.doi: 10.1186/1756-0500-3-67.

    [12]

    D. Gilbarg and T. N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.

    [13]

    D. Green and G. Kroemer, The pathophysiology of mitochondrial cell death, Science, 305 (2004), 626-629.doi: 10.1126/science.1099320.

    [14]

    D. Hunter, R. Haworth and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, Journal of Biological Chemistry, 251 (1976), 5069-5077.

    [15]

    G. Kroemer, L. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163.doi: 10.1152/physrev.00013.2006.

    [16]

    G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W_{loc}^{1,1}(\mathbbR^n ; \mathbbR^d)$ and $BV_{loc}(\mathbbR^n ; \mathbbR^d )$, J. Eur. Math. Soc., 9 (2007), 219-252.doi: 10.4171/JEMS/78.

    [17]

    S. Massari, Kinetic analysis of the mitochondrial permeability transition, Journal of Biological Chemistry, 271 (1996), 31942-31948.

    [18]

    S. Naghdi, M. Waldeck-Weiermair, I. Fertschai, M. Poteser, W. Graier and R. Malli, Mitochondrial $Ca^{2+}$ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated $Ca^{2+}$ entry, Journal of Cell Science, 123 (2010), 2553-2564.

    [19]

    M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, Journal of Differential Equations, 46 (1982), 268-299.doi: 10.1016/0022-0396(82)90119-X.

    [20]

    P. Petit, M. Goubern, P. Diolez, S. Susin, N. Zamzami and G. Kroemer, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS letters, 426 (1998), 111-116.doi: 10.1016/S0014-5793(98)00318-4.

    [21]

    V. Petronilli, C. Cola, S. Massari, R. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945.

    [22]

    A. Pokhilko, F. Ataullakhanov and E. Holmuhamedov, Mathematical model of mitochondrial ionic homeostasis: Three modes of $Ca^{2+}$ transport, Journal of Theoretical Biology, 243 (2006), 152-169.doi: 10.1016/j.jtbi.2006.05.025.

    [23]

    R. Rizzuto, S. Marchi, M. Bonora, P. Aguiari, A. Bononi, D. De Stefani, C. Giorgi, S. Leo, A. Rimessi, R. Siviero, E. Zecchini and P. Pinton, $Ca^{2+}$ transfer from the ER to mitochondria: When, how and why, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (2009), 1342-1351.

    [24]

    R. Rizzuto and T. Pozzan, Microdomains of intracellular $Ca^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408.

    [25]

    V. Selivanov, F. Ichas, E. Holmuhamedov, L. Jouaville, Y. Evtodienko and J. Mazat, A model of mitochondrial $Ca^{2+}$-induced $Ca^{2+}$ release simulating the $Ca^{2+}$ oscillations and spikes generated by mitochondria, Biophysical Chemistry, 72 (1998), 111-121.

    [26]

    H. Zischka, N. Larochette, F. Hoffmann, D. Hamöller, N. Jägemann, J. Lichtmannegger, L. Jennen, J. Müller-Höcker, F. Roggel, M. Göttlicher, A. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return