• Previous Article
    Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics
  • DCDS-B Home
  • This Issue
  • Next Article
    Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation
June  2015, 20(4): 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

On an ODE-PDE coupling model of the mitochondrial swelling process

1. 

Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter, Landstrasse 1, 85764 Neuherberg, Germany

2. 

Helmholtz Zentrum München, Institute of Computational Biology, Ingolstädter Landstrasse1, D-85764 Neuherberg,

3. 

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Tokyo, 169-8555

4. 

Institute of Molecular Toxicology and Pharmscology, Helmholtz Center Munich, Ingolstädter, Landstrasse 1, 85764 Neuherberg, Germany, Germany

Received  June 2013 Revised  August 2014 Published  February 2015

Mitochondrial swelling has huge impact to multicellular organisms since it triggers apoptosis, the programmed cell death. In this paper we present a new mathematical model of this phenomenon. As a novelty it includes spatial effects, which are of great importance for the in vivo process. Our model considers three mitochondrial subpopulations varying in the degree of swelling. The evolution of these groups is dependent on the present calcium concentration and is described by a system of ODEs, whereas the calcium propagation is modeled by a reaction-diffusion equation taking into account spatial effects. We analyze the derived model with respect to existence and long-time behavior of solutions and obtain a complete mathematical classification of the swelling process.
Citation: Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031
References:
[1]

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition, Garland Science, 2007.

[2]

M. A. Aon, S. Cortassa, E. Marban and B. O'Rourke, Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes, Journal of Biological Chemistry, 278 (2003), 44735-44744. doi: 10.1074/jbc.M302673200.

[3]

M. A. Aon, S. Cortassa and B. O'Rourke, Percolation and criticality in a mitochondrial network, Proceedings of the National Academy of Sciences of USA, 101 (2004), 4447-4452. doi: 10.1073/pnas.0307156101.

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations, North Holland, 1992.

[5]

S. Baranov, I. Stavrovskaya, A. Brown, A. Tyryshkin and B. Kristal, Kinetic model for $Ca^{2+}$-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms, Journal of Biological Chemistry, 283 (2008), 665-676.

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, vol. 5, North Holland, 1973.

[7]

H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

[8]

G. Calamita, D. Ferri, P. Gena, G. Liquori, A. Cavalier, D. Thomas and M. Svelto, The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water, Journal of Biological Chemistry, 280 (2005), 17149-17153. doi: 10.1074/jbc.C400595200.

[9]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.

[10]

S. Eisenhofer, A Coupled System of Ordinary and Partial Differential Equations Modeling the Swelling of Mitochondria,, PhD Thesis, (). 

[11]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling, BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.

[12]

D. Gilbarg and T. N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.

[13]

D. Green and G. Kroemer, The pathophysiology of mitochondrial cell death, Science, 305 (2004), 626-629. doi: 10.1126/science.1099320.

[14]

D. Hunter, R. Haworth and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, Journal of Biological Chemistry, 251 (1976), 5069-5077.

[15]

G. Kroemer, L. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163. doi: 10.1152/physrev.00013.2006.

[16]

G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W_{loc}^{1,1}(\mathbbR^n ; \mathbbR^d)$ and $BV_{loc}(\mathbbR^n ; \mathbbR^d )$, J. Eur. Math. Soc., 9 (2007), 219-252. doi: 10.4171/JEMS/78.

[17]

S. Massari, Kinetic analysis of the mitochondrial permeability transition, Journal of Biological Chemistry, 271 (1996), 31942-31948.

[18]

S. Naghdi, M. Waldeck-Weiermair, I. Fertschai, M. Poteser, W. Graier and R. Malli, Mitochondrial $Ca^{2+}$ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated $Ca^{2+}$ entry, Journal of Cell Science, 123 (2010), 2553-2564.

[19]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, Journal of Differential Equations, 46 (1982), 268-299. doi: 10.1016/0022-0396(82)90119-X.

[20]

P. Petit, M. Goubern, P. Diolez, S. Susin, N. Zamzami and G. Kroemer, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS letters, 426 (1998), 111-116. doi: 10.1016/S0014-5793(98)00318-4.

[21]

V. Petronilli, C. Cola, S. Massari, R. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945.

[22]

A. Pokhilko, F. Ataullakhanov and E. Holmuhamedov, Mathematical model of mitochondrial ionic homeostasis: Three modes of $Ca^{2+}$ transport, Journal of Theoretical Biology, 243 (2006), 152-169. doi: 10.1016/j.jtbi.2006.05.025.

[23]

R. Rizzuto, S. Marchi, M. Bonora, P. Aguiari, A. Bononi, D. De Stefani, C. Giorgi, S. Leo, A. Rimessi, R. Siviero, E. Zecchini and P. Pinton, $Ca^{2+}$ transfer from the ER to mitochondria: When, how and why, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (2009), 1342-1351.

[24]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $Ca^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408.

[25]

V. Selivanov, F. Ichas, E. Holmuhamedov, L. Jouaville, Y. Evtodienko and J. Mazat, A model of mitochondrial $Ca^{2+}$-induced $Ca^{2+}$ release simulating the $Ca^{2+}$ oscillations and spikes generated by mitochondria, Biophysical Chemistry, 72 (1998), 111-121.

[26]

H. Zischka, N. Larochette, F. Hoffmann, D. Hamöller, N. Jägemann, J. Lichtmannegger, L. Jennen, J. Müller-Höcker, F. Roggel, M. Göttlicher, A. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.

show all references

References:
[1]

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition, Garland Science, 2007.

[2]

M. A. Aon, S. Cortassa, E. Marban and B. O'Rourke, Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes, Journal of Biological Chemistry, 278 (2003), 44735-44744. doi: 10.1074/jbc.M302673200.

[3]

M. A. Aon, S. Cortassa and B. O'Rourke, Percolation and criticality in a mitochondrial network, Proceedings of the National Academy of Sciences of USA, 101 (2004), 4447-4452. doi: 10.1073/pnas.0307156101.

[4]

A. Babin and M. Vishik, Attractors of Evolution Equations, North Holland, 1992.

[5]

S. Baranov, I. Stavrovskaya, A. Brown, A. Tyryshkin and B. Kristal, Kinetic model for $Ca^{2+}$-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms, Journal of Biological Chemistry, 283 (2008), 665-676.

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, vol. 5, North Holland, 1973.

[7]

H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

[8]

G. Calamita, D. Ferri, P. Gena, G. Liquori, A. Cavalier, D. Thomas and M. Svelto, The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water, Journal of Biological Chemistry, 280 (2005), 17149-17153. doi: 10.1074/jbc.C400595200.

[9]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002.

[10]

S. Eisenhofer, A Coupled System of Ordinary and Partial Differential Equations Modeling the Swelling of Mitochondria,, PhD Thesis, (). 

[11]

S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling, BMC Research Notes, 3 (2010), p67. doi: 10.1186/1756-0500-3-67.

[12]

D. Gilbarg and T. N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.

[13]

D. Green and G. Kroemer, The pathophysiology of mitochondrial cell death, Science, 305 (2004), 626-629. doi: 10.1126/science.1099320.

[14]

D. Hunter, R. Haworth and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, Journal of Biological Chemistry, 251 (1976), 5069-5077.

[15]

G. Kroemer, L. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163. doi: 10.1152/physrev.00013.2006.

[16]

G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W_{loc}^{1,1}(\mathbbR^n ; \mathbbR^d)$ and $BV_{loc}(\mathbbR^n ; \mathbbR^d )$, J. Eur. Math. Soc., 9 (2007), 219-252. doi: 10.4171/JEMS/78.

[17]

S. Massari, Kinetic analysis of the mitochondrial permeability transition, Journal of Biological Chemistry, 271 (1996), 31942-31948.

[18]

S. Naghdi, M. Waldeck-Weiermair, I. Fertschai, M. Poteser, W. Graier and R. Malli, Mitochondrial $Ca^{2+}$ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated $Ca^{2+}$ entry, Journal of Cell Science, 123 (2010), 2553-2564.

[19]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, Journal of Differential Equations, 46 (1982), 268-299. doi: 10.1016/0022-0396(82)90119-X.

[20]

P. Petit, M. Goubern, P. Diolez, S. Susin, N. Zamzami and G. Kroemer, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS letters, 426 (1998), 111-116. doi: 10.1016/S0014-5793(98)00318-4.

[21]

V. Petronilli, C. Cola, S. Massari, R. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945.

[22]

A. Pokhilko, F. Ataullakhanov and E. Holmuhamedov, Mathematical model of mitochondrial ionic homeostasis: Three modes of $Ca^{2+}$ transport, Journal of Theoretical Biology, 243 (2006), 152-169. doi: 10.1016/j.jtbi.2006.05.025.

[23]

R. Rizzuto, S. Marchi, M. Bonora, P. Aguiari, A. Bononi, D. De Stefani, C. Giorgi, S. Leo, A. Rimessi, R. Siviero, E. Zecchini and P. Pinton, $Ca^{2+}$ transfer from the ER to mitochondria: When, how and why, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (2009), 1342-1351.

[24]

R. Rizzuto and T. Pozzan, Microdomains of intracellular $Ca^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408.

[25]

V. Selivanov, F. Ichas, E. Holmuhamedov, L. Jouaville, Y. Evtodienko and J. Mazat, A model of mitochondrial $Ca^{2+}$-induced $Ca^{2+}$ release simulating the $Ca^{2+}$ oscillations and spikes generated by mitochondria, Biophysical Chemistry, 72 (1998), 111-121.

[26]

H. Zischka, N. Larochette, F. Hoffmann, D. Hamöller, N. Jägemann, J. Lichtmannegger, L. Jennen, J. Müller-Höcker, F. Roggel, M. Göttlicher, A. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058.

[1]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[2]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[3]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure and Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[4]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations and Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[5]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[6]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360

[7]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[8]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[9]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[10]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[11]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[12]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[13]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[14]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[15]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control and Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[16]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

[17]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[18]

Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018

[19]

A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373

[20]

Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (7)

[Back to Top]