Citation: |
[1] |
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 5th edition, Garland Science, 2007. |
[2] |
M. A. Aon, S. Cortassa, E. Marban and B. O'Rourke, Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes, Journal of Biological Chemistry, 278 (2003), 44735-44744.doi: 10.1074/jbc.M302673200. |
[3] |
M. A. Aon, S. Cortassa and B. O'Rourke, Percolation and criticality in a mitochondrial network, Proceedings of the National Academy of Sciences of USA, 101 (2004), 4447-4452.doi: 10.1073/pnas.0307156101. |
[4] |
A. Babin and M. Vishik, Attractors of Evolution Equations, North Holland, 1992. |
[5] |
S. Baranov, I. Stavrovskaya, A. Brown, A. Tyryshkin and B. Kristal, Kinetic model for $Ca^{2+}$-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms, Journal of Biological Chemistry, 283 (2008), 665-676. |
[6] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, vol. 5, North Holland, 1973. |
[7] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. |
[8] |
G. Calamita, D. Ferri, P. Gena, G. Liquori, A. Cavalier, D. Thomas and M. Svelto, The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water, Journal of Biological Chemistry, 280 (2005), 17149-17153.doi: 10.1074/jbc.C400595200. |
[9] |
V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, 2002. |
[10] |
S. Eisenhofer, A Coupled System of Ordinary and Partial Differential Equations Modeling the Swelling of Mitochondria, PhD Thesis, 137. |
[11] |
S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir and H. Zischka, A mathematical model of mitochondrial swelling, BMC Research Notes, 3 (2010), p67.doi: 10.1186/1756-0500-3-67. |
[12] |
D. Gilbarg and T. N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983. |
[13] |
D. Green and G. Kroemer, The pathophysiology of mitochondrial cell death, Science, 305 (2004), 626-629.doi: 10.1126/science.1099320. |
[14] |
D. Hunter, R. Haworth and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, Journal of Biological Chemistry, 251 (1976), 5069-5077. |
[15] |
G. Kroemer, L. Galluzzi and C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiological Reviews, 87 (2007), 99-163.doi: 10.1152/physrev.00013.2006. |
[16] |
G. Leoni and M. Morini, Necessary and sufficient conditions for the chain rule in $W_{loc}^{1,1}(\mathbbR^n ; \mathbbR^d)$ and $BV_{loc}(\mathbbR^n ; \mathbbR^d )$, J. Eur. Math. Soc., 9 (2007), 219-252.doi: 10.4171/JEMS/78. |
[17] |
S. Massari, Kinetic analysis of the mitochondrial permeability transition, Journal of Biological Chemistry, 271 (1996), 31942-31948. |
[18] |
S. Naghdi, M. Waldeck-Weiermair, I. Fertschai, M. Poteser, W. Graier and R. Malli, Mitochondrial $Ca^{2+}$ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated $Ca^{2+}$ entry, Journal of Cell Science, 123 (2010), 2553-2564. |
[19] |
M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, Journal of Differential Equations, 46 (1982), 268-299.doi: 10.1016/0022-0396(82)90119-X. |
[20] |
P. Petit, M. Goubern, P. Diolez, S. Susin, N. Zamzami and G. Kroemer, Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: The impact of irreversible permeability transition, FEBS letters, 426 (1998), 111-116.doi: 10.1016/S0014-5793(98)00318-4. |
[21] |
V. Petronilli, C. Cola, S. Massari, R. Colonna and P. Bernardi, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, Journal of Biological Chemistry, 268 (1993), 21939-21945. |
[22] |
A. Pokhilko, F. Ataullakhanov and E. Holmuhamedov, Mathematical model of mitochondrial ionic homeostasis: Three modes of $Ca^{2+}$ transport, Journal of Theoretical Biology, 243 (2006), 152-169.doi: 10.1016/j.jtbi.2006.05.025. |
[23] |
R. Rizzuto, S. Marchi, M. Bonora, P. Aguiari, A. Bononi, D. De Stefani, C. Giorgi, S. Leo, A. Rimessi, R. Siviero, E. Zecchini and P. Pinton, $Ca^{2+}$ transfer from the ER to mitochondria: When, how and why, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (2009), 1342-1351. |
[24] |
R. Rizzuto and T. Pozzan, Microdomains of intracellular $Ca^{2+}$: Molecular determinants and functional consequences, Physiological Reviews, 86 (2006), 369-408. |
[25] |
V. Selivanov, F. Ichas, E. Holmuhamedov, L. Jouaville, Y. Evtodienko and J. Mazat, A model of mitochondrial $Ca^{2+}$-induced $Ca^{2+}$ release simulating the $Ca^{2+}$ oscillations and spikes generated by mitochondria, Biophysical Chemistry, 72 (1998), 111-121. |
[26] |
H. Zischka, N. Larochette, F. Hoffmann, D. Hamöller, N. Jägemann, J. Lichtmannegger, L. Jennen, J. Müller-Höcker, F. Roggel, M. Göttlicher, A. M. Vollmar and G. Kroemer, Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition, Analytical Chemistry, 80 (2008), 5051-5058. |