-
Previous Article
A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced
- DCDS-B Home
- This Issue
-
Next Article
On an ODE-PDE coupling model of the mitochondrial swelling process
Migration and orientation of endothelial cells on micropatterned polymers: A simple model based on classical mechanics
1. | INRIA Bordeaux-Sud-Ouest, F-33400,Talence, France, France, France, France |
2. | INSERM, IECB, UMR 5248, F-33600, Pessac, France, France |
References:
[1] |
K. Anselme, P. Davidson, A. Popa, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, 6 (2010), 3824-3846.
doi: 10.1016/j.actbio.2010.04.001. |
[2] |
M. Bagnat and K. Simons, Cell surface polarization during yeast mating, Proceedings of the National Academy of Sciences, 99 (2002), 14183-14188.
doi: 10.1073/pnas.172517799. |
[3] |
C. Chen, M. Mrksich, S. Huang, G. Whitesides and D. Ingber, Geometric control of cell life and death, Science, 276 (1997), 1425-1428.
doi: 10.1126/science.276.5317.1425. |
[4] |
T. Colin, M.-C. Durrieu, J. Joie, Y. Lei, Y. Mammeri, C. Poignard and O. Saut, Modeling of the migration of endothelial cells on bioactive micropatterned polymers, Mathematical biosciences and engineering, 10 (2013), 997-1015.
doi: 10.3934/mbe.2013.10.997. |
[5] |
L. Dike, C. Chen, J. Tien, G. Whitesides and D. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates, In Vitro Cell. Dev. Biol., 35 (1999), 441-448.
doi: 10.1007/s11626-999-0050-4. |
[6] |
D. Drasdo, S. Dormann, S. Hoehme and A. Deutsch, Cell-based models of avascular tumor growth, in Function and Regulation of Cellular Systems, Mathematics and Biosciences in Interaction, Birkhäuser Basel, (2004), 367-378, URL http://dx.doi.org/10.1007/978-3-0348-7895-1_37. |
[7] |
A. Folch and M. Toner, Microengineering of cellular interactions, Annu. Rev. Biomed. Eng., 2 (2000), 227-256. |
[8] |
R. J. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Physical Review E, 80 (2009), 040903(R).
doi: 10.1103/PhysRevE.80.040903. |
[9] |
J. Irazoqui, A. Gladfelter and D. Lew, Scaffold-mediated symmetry breaking by cdc42p, Nat. Cell Biol., 5 (2003), 1062-1070.
doi: 10.1038/ncb1068. |
[10] |
Y. Ito, Surface micropatterning to regulate cell functions, Biomaterials, 20 (1999), 2333-2342.
doi: 10.1016/S0142-9612(99)00162-3. |
[11] |
R. Jain, P. Au, J. Tam, D. Duda and D. Fukumura, Engineering vascularized tissue, Nat. Biotechnol., 23 (2005), 821-823.
doi: 10.1038/nbt0705-821. |
[12] |
M. Kamei, W. Saunders, K. Bayless, L. Dye, G. Davis and B. Weinstein, Endothelial tubes assemble from intracellular vacuoles in vivo, Nature, 442 (2006), 453-456.
doi: 10.1038/nature04923. |
[13] |
Y. Lei, Biochemical and Microscale Modification of Polymer for Endothelial Cell Angiogenesis, PhD thesis, Université Bordeaux 1, 2012. |
[14] |
Y. Lei, O. Zouani, L. Rami, C. Chanseau and M.-C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery, Small, 9 (2013), 1086-1095.
doi: 10.1002/smll.201202410. |
[15] |
Y. Lei, O. Zouani, M. Rémy, C. Ayela and M.-C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells, PLoS ONE, 7 (2012), e41163.
doi: 10.1371/journal.pone.0041163. |
[16] |
B. Lubarsky and M. Krasnow, Tube morphogenesis: Making and shaping biological tubes, Cell, 112 (2006), 19-28. |
[17] |
K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast, Annual Reviews in Microbiology, 52 (1998), 687-744.
doi: 10.1146/annurev.micro.52.1.687. |
[18] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254 (2008), 178-196, URL http://www.sciencedirect.com/science/article/pii/S0022519308001896.
doi: 10.1016/j.jtbi.2008.04.011. |
[19] |
C. Min and F. Gibou, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids, Journal of Computational Physics, 219 (2006), 912-929.
doi: 10.1016/j.jcp.2006.07.019. |
[20] |
M. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, 33 (1991), 161-174.
doi: 10.2307/1269043. |
[21] |
R. Nerem, Tissue engineering: The hope, the hype, and the future, Tissue Eng., 12. |
[22] |
D. Nicolau, T. T., H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists, Biosens. Bioelectron., 14 (1999), 317-324. |
[23] |
E. Phelps and A. Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering, Curr. Opin. Biotechnol., 21 (2010), 704-709.
doi: 10.1016/j.copbio.2010.06.005. |
[24] |
T.-H. Tsai, Simulations of endothelial cells clusters migration in angiogenesis, The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 1 (2013), 111-115. |
[25] |
R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase, Science, 299 (2003), 1231-1235, URL http://www.sciencemag.org/content/299/5610/1231.abstract.
doi: 10.1126/science.1080944. |
[26] |
R. Wedlich-Soldner, S. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling, The Journal of Cell Biology, 166 (2004), 889-900.
doi: 10.1083/jcb.200405061. |
show all references
References:
[1] |
K. Anselme, P. Davidson, A. Popa, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, 6 (2010), 3824-3846.
doi: 10.1016/j.actbio.2010.04.001. |
[2] |
M. Bagnat and K. Simons, Cell surface polarization during yeast mating, Proceedings of the National Academy of Sciences, 99 (2002), 14183-14188.
doi: 10.1073/pnas.172517799. |
[3] |
C. Chen, M. Mrksich, S. Huang, G. Whitesides and D. Ingber, Geometric control of cell life and death, Science, 276 (1997), 1425-1428.
doi: 10.1126/science.276.5317.1425. |
[4] |
T. Colin, M.-C. Durrieu, J. Joie, Y. Lei, Y. Mammeri, C. Poignard and O. Saut, Modeling of the migration of endothelial cells on bioactive micropatterned polymers, Mathematical biosciences and engineering, 10 (2013), 997-1015.
doi: 10.3934/mbe.2013.10.997. |
[5] |
L. Dike, C. Chen, J. Tien, G. Whitesides and D. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates, In Vitro Cell. Dev. Biol., 35 (1999), 441-448.
doi: 10.1007/s11626-999-0050-4. |
[6] |
D. Drasdo, S. Dormann, S. Hoehme and A. Deutsch, Cell-based models of avascular tumor growth, in Function and Regulation of Cellular Systems, Mathematics and Biosciences in Interaction, Birkhäuser Basel, (2004), 367-378, URL http://dx.doi.org/10.1007/978-3-0348-7895-1_37. |
[7] |
A. Folch and M. Toner, Microengineering of cellular interactions, Annu. Rev. Biomed. Eng., 2 (2000), 227-256. |
[8] |
R. J. Hawkins, O. Bénichou, M. Piel and R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Physical Review E, 80 (2009), 040903(R).
doi: 10.1103/PhysRevE.80.040903. |
[9] |
J. Irazoqui, A. Gladfelter and D. Lew, Scaffold-mediated symmetry breaking by cdc42p, Nat. Cell Biol., 5 (2003), 1062-1070.
doi: 10.1038/ncb1068. |
[10] |
Y. Ito, Surface micropatterning to regulate cell functions, Biomaterials, 20 (1999), 2333-2342.
doi: 10.1016/S0142-9612(99)00162-3. |
[11] |
R. Jain, P. Au, J. Tam, D. Duda and D. Fukumura, Engineering vascularized tissue, Nat. Biotechnol., 23 (2005), 821-823.
doi: 10.1038/nbt0705-821. |
[12] |
M. Kamei, W. Saunders, K. Bayless, L. Dye, G. Davis and B. Weinstein, Endothelial tubes assemble from intracellular vacuoles in vivo, Nature, 442 (2006), 453-456.
doi: 10.1038/nature04923. |
[13] |
Y. Lei, Biochemical and Microscale Modification of Polymer for Endothelial Cell Angiogenesis, PhD thesis, Université Bordeaux 1, 2012. |
[14] |
Y. Lei, O. Zouani, L. Rami, C. Chanseau and M.-C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery, Small, 9 (2013), 1086-1095.
doi: 10.1002/smll.201202410. |
[15] |
Y. Lei, O. Zouani, M. Rémy, C. Ayela and M.-C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells, PLoS ONE, 7 (2012), e41163.
doi: 10.1371/journal.pone.0041163. |
[16] |
B. Lubarsky and M. Krasnow, Tube morphogenesis: Making and shaping biological tubes, Cell, 112 (2006), 19-28. |
[17] |
K. Madden and M. Snyder, Cell polarity and morphogenesis in budding yeast, Annual Reviews in Microbiology, 52 (1998), 687-744.
doi: 10.1146/annurev.micro.52.1.687. |
[18] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254 (2008), 178-196, URL http://www.sciencedirect.com/science/article/pii/S0022519308001896.
doi: 10.1016/j.jtbi.2008.04.011. |
[19] |
C. Min and F. Gibou, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids, Journal of Computational Physics, 219 (2006), 912-929.
doi: 10.1016/j.jcp.2006.07.019. |
[20] |
M. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, 33 (1991), 161-174.
doi: 10.2307/1269043. |
[21] |
R. Nerem, Tissue engineering: The hope, the hype, and the future, Tissue Eng., 12. |
[22] |
D. Nicolau, T. T., H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists, Biosens. Bioelectron., 14 (1999), 317-324. |
[23] |
E. Phelps and A. Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering, Curr. Opin. Biotechnol., 21 (2010), 704-709.
doi: 10.1016/j.copbio.2010.06.005. |
[24] |
T.-H. Tsai, Simulations of endothelial cells clusters migration in angiogenesis, The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), 1 (2013), 111-115. |
[25] |
R. Wedlich-Soldner, S. Altschuler, L. Wu and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the cdc42 gtpase, Science, 299 (2003), 1231-1235, URL http://www.sciencemag.org/content/299/5610/1231.abstract.
doi: 10.1126/science.1080944. |
[26] |
R. Wedlich-Soldner, S. Wai, T. Schmidt and R. Li, Robust cell polarity is a dynamic state established by coupling transport and gtpase signaling, The Journal of Cell Biology, 166 (2004), 889-900.
doi: 10.1083/jcb.200405061. |
[1] |
Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 |
[2] |
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75 |
[3] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[4] |
Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575 |
[5] |
Yangjin Kim, Soyeon Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 969-1015. doi: 10.3934/dcdsb.2013.18.969 |
[6] |
Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences & Engineering, 2016, 13 (2) : 443-460. doi: 10.3934/mbe.2015011 |
[7] |
Pierre Degond, Sophie Hecht, Nicolas Vauchelet. Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15 (1) : 57-85. doi: 10.3934/nhm.2020003 |
[8] |
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235 |
[9] |
Alessandro Cucchi, Antoine Mellet, Nicolas Meunier. Self polarization and traveling wave in a model for cell crawling migration. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2381-2407. doi: 10.3934/dcds.2021194 |
[10] |
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 |
[11] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2319-2334. doi: 10.3934/jimo.2021069 |
[12] |
Nadia Loy, Luigi Preziosi. Stability of a non-local kinetic model for cell migration with density dependent orientation bias. Kinetic and Related Models, 2020, 13 (5) : 1007-1027. doi: 10.3934/krm.2020035 |
[13] |
Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203 |
[14] |
Yuchi Qiu, Weitao Chen, Qing Nie. Stochastic dynamics of cell lineage in tissue homeostasis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3971-3994. doi: 10.3934/dcdsb.2018339 |
[15] |
Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141 |
[16] |
Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2403-2424. doi: 10.3934/dcdss.2020120 |
[17] |
Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997 |
[18] |
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19 |
[19] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[20] |
H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans. A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences & Engineering, 2012, 9 (4) : 699-736. doi: 10.3934/mbe.2012.9.699 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]