July  2015, 20(5): 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

Stability and convergence of time-stepping methods for a nonlocal model for diffusion

1. 

Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, United States, United States

Received  November 2013 Revised  January 2015 Published  May 2015

A time-dependent nonlocal model for diffusion is considered. A feature of the model is that instead of boundary conditions, constraints over regions having finite measures are imposed. The explicit forward-Euler, implicit backward-Euler, and Crank-Nicolson methods are considered for discretizing the time derivative and piecewise-linear finite element methods are used for spatial discretization. The unconditional stability of the backward-Euler and Crank-Nicolson schemes and the conditional stability of the forward-Euler scheme are proved as are optimal error estimates for all three schemes. Comparisons with the analogous results for classical local diffusion problems, e.g., the heat equation, are provided as are the results of numerical experiments that illustrate the theoretical results.
Citation: Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315
References:
[1]

B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31 (2010), 1301-1317. doi: 10.1080/01630563.2010.519136.  Google Scholar

[2]

A. Buades, B. Coll and J. Morel, Image denoising methods: A new nonlocal principle, SIAM Review, 52 (2010), 113-147. doi: 10.1137/090773908.  Google Scholar

[3]

X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Meth. Appl. Mech. Engrg., 200 (2011), 1237-1250. doi: 10.1016/j.cma.2010.10.014.  Google Scholar

[4]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review, 54 (2012), 667-696. doi: 10.1137/110833294.  Google Scholar

[5]

Q. Du, L. Tian and X. Zhao, A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models, SIAM J. Numer. Anal., 51 (2013), 1211-1234. doi: 10.1137/120871638.  Google Scholar

[6]

V. Ervin, N. Heuer and J. Roop, Numerical approximation of a time dependent, non-linear, fractional order diffusion equation, SIAM J. Math. Anal., 45 (2007), 572-591. doi: 10.1137/050642757.  Google Scholar

[7]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630. doi: 10.1137/060669358.  Google Scholar

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[9]

M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598. doi: 10.1137/090766607.  Google Scholar

[10]

Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197. doi: 10.1007/s10915-009-9320-2.  Google Scholar

[11]

H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model, J. Comput. Phys., 231 (2012), 7730-7738. doi: 10.1016/j.jcp.2012.06.009.  Google Scholar

[12]

O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, J. Mech. Phys. Solids., 53 (2005), 705-728. doi: 10.1016/j.jmps.2004.08.006.  Google Scholar

[13]

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Math. Anal., 48 (2010), 1759-1780. doi: 10.1137/090781267.  Google Scholar

[14]

K. Zhou and Q. Du, Mathematical analysis for the peridynamic nonlocal continuum theory, Math. Model. Numer. Anal., 45 (2011), 217-234. doi: 10.1051/m2an/2010040.  Google Scholar

show all references

References:
[1]

B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems, Numer. Funct. Anal. Optim., 31 (2010), 1301-1317. doi: 10.1080/01630563.2010.519136.  Google Scholar

[2]

A. Buades, B. Coll and J. Morel, Image denoising methods: A new nonlocal principle, SIAM Review, 52 (2010), 113-147. doi: 10.1137/090773908.  Google Scholar

[3]

X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput. Meth. Appl. Mech. Engrg., 200 (2011), 1237-1250. doi: 10.1016/j.cma.2010.10.014.  Google Scholar

[4]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review, 54 (2012), 667-696. doi: 10.1137/110833294.  Google Scholar

[5]

Q. Du, L. Tian and X. Zhao, A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models, SIAM J. Numer. Anal., 51 (2013), 1211-1234. doi: 10.1137/120871638.  Google Scholar

[6]

V. Ervin, N. Heuer and J. Roop, Numerical approximation of a time dependent, non-linear, fractional order diffusion equation, SIAM J. Math. Anal., 45 (2007), 572-591. doi: 10.1137/050642757.  Google Scholar

[7]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630. doi: 10.1137/060669358.  Google Scholar

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[9]

M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598. doi: 10.1137/090766607.  Google Scholar

[10]

Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197. doi: 10.1007/s10915-009-9320-2.  Google Scholar

[11]

H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model, J. Comput. Phys., 231 (2012), 7730-7738. doi: 10.1016/j.jcp.2012.06.009.  Google Scholar

[12]

O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, J. Mech. Phys. Solids., 53 (2005), 705-728. doi: 10.1016/j.jmps.2004.08.006.  Google Scholar

[13]

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions, SIAM J. Math. Anal., 48 (2010), 1759-1780. doi: 10.1137/090781267.  Google Scholar

[14]

K. Zhou and Q. Du, Mathematical analysis for the peridynamic nonlocal continuum theory, Math. Model. Numer. Anal., 45 (2011), 217-234. doi: 10.1051/m2an/2010040.  Google Scholar

[1]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[2]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[3]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[4]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[5]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[6]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[8]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[9]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[10]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[11]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[12]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[13]

Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, 2021, 29 (6) : 4099-4118. doi: 10.3934/era.2021074

[14]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[15]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[16]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[17]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems & Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[18]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[19]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[20]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]