-
Previous Article
Spatial population dynamics in a producer-scrounger model
- DCDS-B Home
- This Issue
-
Next Article
Preface
Extinction in discrete, competitive, multi-species patch models
1. | Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, United States, United States, United States, United States, United States |
References:
[1] |
M. Doebeli, Dispersal and dynamics,, Theoretical Population Biology, 47 (1995), 82.
doi: 10.1006/tpbi.1995.1004. |
[2] |
J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems,, Journal of Mathematical Biology, 30 (1991), 161.
doi: 10.1007/BF00160333. |
[3] |
J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems,, Journal of Mathematical Analysis and Applications, 168 (1992), 385.
doi: 10.1016/0022-247X(92)90167-C. |
[4] |
J. E. Franke and A. Yakubu, Extinction and persistence of species in discrete competitive systems with a safe refuge,, Journal of Mathematical Analysis and Applications, 203 (1996), 746.
doi: 10.1006/jmaa.1996.0410. |
[5] |
J. E. Franke and A. Yakubu, Diffusion between patches in multi-species discrete competitive systems,, in Advances in Difference Equations (eds. S. Elaydi, (1997), 205.
doi: 10.1207/s15374424jccp2602_9. |
[6] |
A. Hastings, Can spatial variation alone lead to selection for dispersal?,, Theoretical Population Biology, 24 (1983), 244.
doi: 10.1016/0040-5809(83)90027-8. |
[7] |
A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations,, Ecology, 74 (1993), 1362.
doi: 10.2307/1940066. |
[8] |
A. Hastings and C. L. Wolin, Within-patch dynamics in a metapopulation,, Ecology, 70 (1989), 1261.
doi: 10.2307/1938184. |
[9] |
M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying environments,, American Naturalist, 140 (1992), 1010.
doi: 10.1086/285453. |
[10] |
S. J. Schreiber, Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence,, Proceedings of the Royal Society B, 277 (2010), 1907.
doi: 10.1098/rspb.2009.2006. |
[11] |
C. M. Taylor and A. Hastings, Allee effects in biological invasions,, Ecology Letters, 8 (2005), 895.
doi: 10.1111/j.1461-0248.2005.00787.x. |
[12] |
J. Verboom, R. Foppen, P. Chardon, P. Opdam and P. Luttikhuizen, Introducing the key patch approach for habitat networks with persistent populations: An example for marshland birds,, Biological Conservation, 100 (2001), 89.
doi: 10.1016/S0006-3207(00)00210-X. |
[13] |
A. Yakubu and C. Castillo-Chavez, Interplay between local dynamics and dispersal in discrete-time metapopulation models,, Journal of Theoretical Biology, 218 (2002), 273.
doi: 10.1006/jtbi.2002.3075. |
show all references
References:
[1] |
M. Doebeli, Dispersal and dynamics,, Theoretical Population Biology, 47 (1995), 82.
doi: 10.1006/tpbi.1995.1004. |
[2] |
J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems,, Journal of Mathematical Biology, 30 (1991), 161.
doi: 10.1007/BF00160333. |
[3] |
J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems,, Journal of Mathematical Analysis and Applications, 168 (1992), 385.
doi: 10.1016/0022-247X(92)90167-C. |
[4] |
J. E. Franke and A. Yakubu, Extinction and persistence of species in discrete competitive systems with a safe refuge,, Journal of Mathematical Analysis and Applications, 203 (1996), 746.
doi: 10.1006/jmaa.1996.0410. |
[5] |
J. E. Franke and A. Yakubu, Diffusion between patches in multi-species discrete competitive systems,, in Advances in Difference Equations (eds. S. Elaydi, (1997), 205.
doi: 10.1207/s15374424jccp2602_9. |
[6] |
A. Hastings, Can spatial variation alone lead to selection for dispersal?,, Theoretical Population Biology, 24 (1983), 244.
doi: 10.1016/0040-5809(83)90027-8. |
[7] |
A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations,, Ecology, 74 (1993), 1362.
doi: 10.2307/1940066. |
[8] |
A. Hastings and C. L. Wolin, Within-patch dynamics in a metapopulation,, Ecology, 70 (1989), 1261.
doi: 10.2307/1938184. |
[9] |
M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying environments,, American Naturalist, 140 (1992), 1010.
doi: 10.1086/285453. |
[10] |
S. J. Schreiber, Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence,, Proceedings of the Royal Society B, 277 (2010), 1907.
doi: 10.1098/rspb.2009.2006. |
[11] |
C. M. Taylor and A. Hastings, Allee effects in biological invasions,, Ecology Letters, 8 (2005), 895.
doi: 10.1111/j.1461-0248.2005.00787.x. |
[12] |
J. Verboom, R. Foppen, P. Chardon, P. Opdam and P. Luttikhuizen, Introducing the key patch approach for habitat networks with persistent populations: An example for marshland birds,, Biological Conservation, 100 (2001), 89.
doi: 10.1016/S0006-3207(00)00210-X. |
[13] |
A. Yakubu and C. Castillo-Chavez, Interplay between local dynamics and dispersal in discrete-time metapopulation models,, Journal of Theoretical Biology, 218 (2002), 273.
doi: 10.1006/jtbi.2002.3075. |
[1] |
Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861 |
[2] |
Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 |
[3] |
Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415 |
[4] |
Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697 |
[5] |
Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225 |
[6] |
Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049 |
[7] |
Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699 |
[8] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021007 |
[9] |
Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567 |
[10] |
Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243 |
[11] |
John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843 |
[12] |
Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 |
[13] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 |
[14] |
Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357 |
[15] |
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933 |
[16] |
Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001 |
[17] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
[18] |
Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180 |
[19] |
Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 |
[20] |
Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]