August  2015, 20(6): 1583-1590. doi: 10.3934/dcdsb.2015.20.1583

Extinction in discrete, competitive, multi-species patch models

1. 

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, United States, United States, United States, United States, United States

Received  November 2013 Revised  December 2014 Published  June 2015

In this paper we extend the results of Franke and Yakubu in [5] for extinction in discrete competitive patch models. For a system of $n$ species on $m$ patches, we define conditions under which one species is a ``superior competitor" to another and show that this is sufficient for one species to drive another to extinction. We also illustrate the result with an example for three species on three patches.
Citation: David M. Chan, Matt McCombs, Sarah Boegner, Hye Jin Ban, Suzanne L. Robertson. Extinction in discrete, competitive, multi-species patch models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1583-1590. doi: 10.3934/dcdsb.2015.20.1583
References:
[1]

M. Doebeli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106. doi: 10.1006/tpbi.1995.1004.

[2]

J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, Journal of Mathematical Biology, 30 (1991), 161-168. doi: 10.1007/BF00160333.

[3]

J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems, Journal of Mathematical Analysis and Applications, 168 (1992), 385-400. doi: 10.1016/0022-247X(92)90167-C.

[4]

J. E. Franke and A. Yakubu, Extinction and persistence of species in discrete competitive systems with a safe refuge, Journal of Mathematical Analysis and Applications, 203 (1996), 746-761. doi: 10.1006/jmaa.1996.0410.

[5]

J. E. Franke and A. Yakubu, Diffusion between patches in multi-species discrete competitive systems, in Advances in Difference Equations (eds. S. Elaydi, G. Ladas, and I. Gyori), Gordon and Breach, Amsterdam, 1997, 205-212. doi: 10.1207/s15374424jccp2602_9.

[6]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251. doi: 10.1016/0040-5809(83)90027-8.

[7]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372. doi: 10.2307/1940066.

[8]

A. Hastings and C. L. Wolin, Within-patch dynamics in a metapopulation, Ecology, 70 (1989), 1261-1266. doi: 10.2307/1938184.

[9]

M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying environments, American Naturalist, 140 (1992), 1010-1027. doi: 10.1086/285453.

[10]

S. J. Schreiber, Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence, Proceedings of the Royal Society B, 277 (2010), 1907-1914. doi: 10.1098/rspb.2009.2006.

[11]

C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x.

[12]

J. Verboom, R. Foppen, P. Chardon, P. Opdam and P. Luttikhuizen, Introducing the key patch approach for habitat networks with persistent populations: An example for marshland birds, Biological Conservation, 100 (2001), 89-101. doi: 10.1016/S0006-3207(00)00210-X.

[13]

A. Yakubu and C. Castillo-Chavez, Interplay between local dynamics and dispersal in discrete-time metapopulation models, Journal of Theoretical Biology, 218 (2002), 273-288. doi: 10.1006/jtbi.2002.3075.

show all references

References:
[1]

M. Doebeli, Dispersal and dynamics, Theoretical Population Biology, 47 (1995), 82-106. doi: 10.1006/tpbi.1995.1004.

[2]

J. E. Franke and A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, Journal of Mathematical Biology, 30 (1991), 161-168. doi: 10.1007/BF00160333.

[3]

J. E. Franke and A. Yakubu, Geometry of exclusion principles in discrete systems, Journal of Mathematical Analysis and Applications, 168 (1992), 385-400. doi: 10.1016/0022-247X(92)90167-C.

[4]

J. E. Franke and A. Yakubu, Extinction and persistence of species in discrete competitive systems with a safe refuge, Journal of Mathematical Analysis and Applications, 203 (1996), 746-761. doi: 10.1006/jmaa.1996.0410.

[5]

J. E. Franke and A. Yakubu, Diffusion between patches in multi-species discrete competitive systems, in Advances in Difference Equations (eds. S. Elaydi, G. Ladas, and I. Gyori), Gordon and Breach, Amsterdam, 1997, 205-212. doi: 10.1207/s15374424jccp2602_9.

[6]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251. doi: 10.1016/0040-5809(83)90027-8.

[7]

A. Hastings, Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations, Ecology, 74 (1993), 1362-1372. doi: 10.2307/1940066.

[8]

A. Hastings and C. L. Wolin, Within-patch dynamics in a metapopulation, Ecology, 70 (1989), 1261-1266. doi: 10.2307/1938184.

[9]

M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying environments, American Naturalist, 140 (1992), 1010-1027. doi: 10.1086/285453.

[10]

S. J. Schreiber, Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence, Proceedings of the Royal Society B, 277 (2010), 1907-1914. doi: 10.1098/rspb.2009.2006.

[11]

C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x.

[12]

J. Verboom, R. Foppen, P. Chardon, P. Opdam and P. Luttikhuizen, Introducing the key patch approach for habitat networks with persistent populations: An example for marshland birds, Biological Conservation, 100 (2001), 89-101. doi: 10.1016/S0006-3207(00)00210-X.

[13]

A. Yakubu and C. Castillo-Chavez, Interplay between local dynamics and dispersal in discrete-time metapopulation models, Journal of Theoretical Biology, 218 (2002), 273-288. doi: 10.1006/jtbi.2002.3075.

[1]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[2]

Baoquan Zhou, Yucong Dai. Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022078

[3]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[4]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[5]

Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697

[6]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[7]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

[8]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[9]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[10]

Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567

[11]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[12]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[13]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[14]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[15]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[16]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[17]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[18]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[19]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[20]

Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (146)
  • HTML views (0)
  • Cited by (0)

[Back to Top]