-
Previous Article
Transversality for time-periodic competitive-cooperative tridiagonal systems
- DCDS-B Home
- This Issue
-
Next Article
How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?
Positive steady state solutions of a plant-pollinator model with diffusion
1. | Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China, China, China |
References:
[1] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331.
doi: 10.2307/3866. |
[2] |
J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339.
doi: 10.1137/0517094. |
[3] |
R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.
|
[4] |
C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361.
doi: 10.1016/S0362-546X(01)00116-X. |
[5] |
P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852.
doi: 10.1126/science.232.4752.852. |
[6] |
P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27.
doi: 10.1038/374027a0. |
[7] |
E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131.
doi: 10.1016/0022-247X(83)90098-7. |
[8] |
C. Darwin, The Origin of Species,, Penguin Books, (1859). Google Scholar |
[9] |
C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876).
doi: 10.1017/CBO9780511694202. |
[10] |
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.
doi: 10.2307/1936298. |
[11] |
Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.
doi: 10.1090/S0002-9947-97-01842-4. |
[12] |
M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270.
doi: 10.1016/j.tpb.2010.08.002. |
[13] |
S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129.
doi: 10.1007/s002850100117. |
[14] |
L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[15] |
L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720.
doi: 10.1016/j.jde.2006.04.005. |
[16] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994).
doi: 10.1007/978-1-4612-0873-0. |
[17] |
J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363.
doi: 10.1016/0022-5193(81)90238-1. |
[18] |
Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243.
doi: 10.1016/j.tpb.2012.01.004. |
[19] |
L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647.
doi: 10.1016/j.amc.2014.03.080. |
show all references
References:
[1] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331.
doi: 10.2307/3866. |
[2] |
J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339.
doi: 10.1137/0517094. |
[3] |
R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.
|
[4] |
C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361.
doi: 10.1016/S0362-546X(01)00116-X. |
[5] |
P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852.
doi: 10.1126/science.232.4752.852. |
[6] |
P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27.
doi: 10.1038/374027a0. |
[7] |
E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131.
doi: 10.1016/0022-247X(83)90098-7. |
[8] |
C. Darwin, The Origin of Species,, Penguin Books, (1859). Google Scholar |
[9] |
C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876).
doi: 10.1017/CBO9780511694202. |
[10] |
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.
doi: 10.2307/1936298. |
[11] |
Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.
doi: 10.1090/S0002-9947-97-01842-4. |
[12] |
M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270.
doi: 10.1016/j.tpb.2010.08.002. |
[13] |
S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129.
doi: 10.1007/s002850100117. |
[14] |
L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[15] |
L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720.
doi: 10.1016/j.jde.2006.04.005. |
[16] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994).
doi: 10.1007/978-1-4612-0873-0. |
[17] |
J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363.
doi: 10.1016/0022-5193(81)90238-1. |
[18] |
Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243.
doi: 10.1016/j.tpb.2012.01.004. |
[19] |
L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647.
doi: 10.1016/j.amc.2014.03.080. |
[1] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[2] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[3] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[8] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[9] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[10] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[11] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[12] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[13] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[14] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[15] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[16] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[17] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[18] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[19] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[20] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]