• Previous Article
    Transversality for time-periodic competitive-cooperative tridiagonal systems
  • DCDS-B Home
  • This Issue
  • Next Article
    How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?
August  2015, 20(6): 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

Positive steady state solutions of a plant-pollinator model with diffusion

1. 

Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China, China, China

Received  September 2014 Revised  December 2014 Published  June 2015

In this paper, a plant-pollinator population system with diffusion is investigated, which is described by a cooperative model with B-D functional response. Using the Leray-Schauder degree theory, we discuss the existence of positive steady state solutions of the model. The result shows when the growth rate of plants is large and the death rate of pollinators is small, the plants and pollinators can coexist. By the regular perturbation theorem and monotone dynamical system theory, the uniqueness and stability of positive solutions have been studied. Especially, we show that the unique positive solution is a global attractor under some conditions. Furthermore, we present some numerical simulations, which is not only to check our theoretical results but also to supply some conjectures out of theoretical analysis.
Citation: Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805
References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331.  doi: 10.2307/3866.  Google Scholar

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339.  doi: 10.1137/0517094.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.   Google Scholar

[4]

C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[5]

P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852.  doi: 10.1126/science.232.4752.852.  Google Scholar

[6]

P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27.  doi: 10.1038/374027a0.  Google Scholar

[7]

E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[8]

C. Darwin, The Origin of Species,, Penguin Books, (1859).   Google Scholar

[9]

C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876).  doi: 10.1017/CBO9780511694202.  Google Scholar

[10]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.  doi: 10.2307/1936298.  Google Scholar

[11]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[12]

M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270.  doi: 10.1016/j.tpb.2010.08.002.  Google Scholar

[13]

S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129.  doi: 10.1007/s002850100117.  Google Scholar

[14]

L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[15]

L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[16]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363.  doi: 10.1016/0022-5193(81)90238-1.  Google Scholar

[18]

Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243.  doi: 10.1016/j.tpb.2012.01.004.  Google Scholar

[19]

L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647.  doi: 10.1016/j.amc.2014.03.080.  Google Scholar

show all references

References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331.  doi: 10.2307/3866.  Google Scholar

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339.  doi: 10.1137/0517094.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.   Google Scholar

[4]

C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[5]

P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852.  doi: 10.1126/science.232.4752.852.  Google Scholar

[6]

P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27.  doi: 10.1038/374027a0.  Google Scholar

[7]

E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[8]

C. Darwin, The Origin of Species,, Penguin Books, (1859).   Google Scholar

[9]

C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876).  doi: 10.1017/CBO9780511694202.  Google Scholar

[10]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881.  doi: 10.2307/1936298.  Google Scholar

[11]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[12]

M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270.  doi: 10.1016/j.tpb.2010.08.002.  Google Scholar

[13]

S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129.  doi: 10.1007/s002850100117.  Google Scholar

[14]

L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[15]

L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720.  doi: 10.1016/j.jde.2006.04.005.  Google Scholar

[16]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[17]

J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363.  doi: 10.1016/0022-5193(81)90238-1.  Google Scholar

[18]

Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243.  doi: 10.1016/j.tpb.2012.01.004.  Google Scholar

[19]

L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647.  doi: 10.1016/j.amc.2014.03.080.  Google Scholar

[1]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[2]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[3]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[8]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[9]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[10]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[11]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[12]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[17]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[18]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[19]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]