January  2015, 20(1): 189-213. doi: 10.3934/dcdsb.2015.20.189

On a multiscale model involving cell contractivity and its effects on tumor invasion

1. 

Bülent Ecevit University, Faculty of Arts and Sciences, Department of Mathematics, 67100 Zonguldak, Turkey

2. 

Technische Universität Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Str. 31, 67663 Kaiserslautern, Germany, Germany

Received  July 2013 Revised  May 2014 Published  November 2014

Cancer cell migration is an essential feature in the process of tumor spread and establishing of metastasis. It characterizes the invasion observed on the level of the cell population, but it is also tightly connected to the events taking place on the subcellular level. These are conditioning the motile and proliferative behavior of the cells, but are also influenced by it. In this work we propose a multiscale model linking these two levels and aiming to assess their interdependence. On the subcellular, microscopic scale it accounts for integrin binding to soluble and insoluble components present in the peritumoral environment, which is seen as the onset of biochemical events leading to changes in the cell's ability to contract and modify its shape. On the macroscale of the cell population this leads to modifications in the diffusion and haptotaxis performed by the tumor cells and implicitly to changes in the tumor environment. We prove the (local) well posedness of our model and perform numerical simulations in order to illustrate the model predictions.
Citation: Gülnihal Meral, Christian Stinner, Christina Surulescu. On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 189-213. doi: 10.3934/dcdsb.2015.20.189
References:
[1]

J. C. Adams, Regulation of protrusive and contractile cell-matrix contacts, J. Cell Sci., 115 (2002), 257-265.

[2]

A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thompson, Mathematical modeling of tumor invasion and metastasis, J. Theoretical Medicine, 2 (2000), 129-154.

[3]

H. T. Banks and C. J. Musante, Well-posedness for a class of abstract nonlinear parabolic systems with time delay, Nonlinear Anal., 35 (1999), 629-648. doi: 10.1016/S0362-546X(98)00053-4.

[4]

R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1963.

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.

[6]

H. Berry, Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion, Biophys. J., 77 (1999), 655-665. doi: 10.1016/S0006-3495(99)76921-3.

[7]

S. B. Carter, Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260. doi: 10.1038/213256a0.

[8]

F. A. C. C. Chalub, P. A. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141. doi: 10.1007/s00605-004-0234-7.

[9]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439. doi: 10.3934/nhm.2006.1.399.

[10]

H. J. Eberl and L. Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electron. J. Differential Equations, Conference, 15 (2007), 77-96.

[11]

A. Eladdadi and D. Isaacson, A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer, Bull. Math. Biol., 70 (2008), 1707-1729.

[12]

C. Engwer, T. Hillen, M. Knappitsch and C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, J. Math. Biol., (2014). doi: 10.1007/s00285-014-0822-7.

[13]

A. van der Flier and A. Sonnenberg, Function and interactions of integrins, Cell Tissue Res., 305 (2001), 285-298.

[14]

P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms, Nature Rev. Cancer, 3 (2003), 362-374. doi: 10.1038/nrc1075.

[15]

P. Friedl and K. Wolf, Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp., 70 (2003), 277-285.

[16]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753.

[17]

T. Hillen, $M^5$ mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006), 585-616. doi: 10.1007/s00285-006-0017-y.

[18]

J. D. Hood and D. A. Cheresh, Role of integrins in cell invasion and migration, Nature Rev. Cancer, 2 (2002), 91-100. doi: 10.1038/nrc727.

[19]

A. Huttenlocher and A. R. Horwitz, Integrins in cell migration, Cold Spring Harb. Perspect. Biol., 3 (2011), a005074. doi: 10.1101/cshperspect.a005074.

[20]

J. Kelkel and C. Surulescu, On some models for cancer cell migration through tissue networks, Math. Biosci. Eng., 8 (2011), 575-589. doi: 10.3934/mbe.2011.8.575.

[21]

J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, Math. Models Methods Appl. Sci., 22 (2012), 1150017, 25 pp. doi: 10.1142/S0218202511500175.

[22]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, 1968.

[23]

K. R. Legate, S. A. Wickström and R. Fässler, Genetic and cell biological analysis of integrin outside-in signaling, Genes Dev., 23 (2009), 397-418. doi: 10.1101/gad.1758709.

[24]

B. Lin, W. R. Holmes, C. J. Wang, T. Ueno, A. Harwell, L. Edelstein-Keshet, T. Inoue and A. Levchenko, Synthetic spatially graded Rac activation drives cell polarization and movement, PNAS, 109 (2012), E3668-E3677. doi: 10.1073/pnas.1210295109.

[25]

T. Lorenz and C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Math. Models Methods Appl. Sci., 24 (2014), 2383-2436. doi: 10.1142/S0218202514500249.

[26]

G. Meral and C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408 (2013), 597-614. doi: 10.1016/j.jmaa.2013.06.017.

[27]

R. E. Mickens, Nonstandard finite difference schemes, in Applications of Nonstandard Finite Difference Schemes (ed. R. E. Mickens), World Sci. Publ., 2000, 1-54. doi: 10.1142/9789812813251_0001.

[28]

H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[29]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250. doi: 10.1137/S0036139900382772.

[30]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal, Int. J. Biomath. Biostat., 1 (2010), 109-128.

[31]

C. Surulescu and N. Surulescu, Modeling and simulation of some cell dispersion problems by a nonparametric method, Math. Biosci. Eng., 8 (2011), 263-277. doi: 10.3934/mbe.2011.8.263.

[32]

C. Surulescu and N. Surulescu, Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, in Nonautonomous Dynamical Systems in the Life Sciences (eds. P. E. Kloeden and C. Pötzsche), Lecture Notes in Mathematics, 2102, Biomathematics Subseries, Springer, 2013, 269-307. doi: 10.1007/978-3-319-03080-7_9.

[33]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland, Amsterdam, 1977.

[34]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167. doi: 10.1137/070711505.

show all references

References:
[1]

J. C. Adams, Regulation of protrusive and contractile cell-matrix contacts, J. Cell Sci., 115 (2002), 257-265.

[2]

A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thompson, Mathematical modeling of tumor invasion and metastasis, J. Theoretical Medicine, 2 (2000), 129-154.

[3]

H. T. Banks and C. J. Musante, Well-posedness for a class of abstract nonlinear parabolic systems with time delay, Nonlinear Anal., 35 (1999), 629-648. doi: 10.1016/S0362-546X(98)00053-4.

[4]

R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1963.

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.

[6]

H. Berry, Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion, Biophys. J., 77 (1999), 655-665. doi: 10.1016/S0006-3495(99)76921-3.

[7]

S. B. Carter, Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260. doi: 10.1038/213256a0.

[8]

F. A. C. C. Chalub, P. A. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141. doi: 10.1007/s00605-004-0234-7.

[9]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439. doi: 10.3934/nhm.2006.1.399.

[10]

H. J. Eberl and L. Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electron. J. Differential Equations, Conference, 15 (2007), 77-96.

[11]

A. Eladdadi and D. Isaacson, A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer, Bull. Math. Biol., 70 (2008), 1707-1729.

[12]

C. Engwer, T. Hillen, M. Knappitsch and C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, J. Math. Biol., (2014). doi: 10.1007/s00285-014-0822-7.

[13]

A. van der Flier and A. Sonnenberg, Function and interactions of integrins, Cell Tissue Res., 305 (2001), 285-298.

[14]

P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms, Nature Rev. Cancer, 3 (2003), 362-374. doi: 10.1038/nrc1075.

[15]

P. Friedl and K. Wolf, Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp., 70 (2003), 277-285.

[16]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753.

[17]

T. Hillen, $M^5$ mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006), 585-616. doi: 10.1007/s00285-006-0017-y.

[18]

J. D. Hood and D. A. Cheresh, Role of integrins in cell invasion and migration, Nature Rev. Cancer, 2 (2002), 91-100. doi: 10.1038/nrc727.

[19]

A. Huttenlocher and A. R. Horwitz, Integrins in cell migration, Cold Spring Harb. Perspect. Biol., 3 (2011), a005074. doi: 10.1101/cshperspect.a005074.

[20]

J. Kelkel and C. Surulescu, On some models for cancer cell migration through tissue networks, Math. Biosci. Eng., 8 (2011), 575-589. doi: 10.3934/mbe.2011.8.575.

[21]

J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, Math. Models Methods Appl. Sci., 22 (2012), 1150017, 25 pp. doi: 10.1142/S0218202511500175.

[22]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, 1968.

[23]

K. R. Legate, S. A. Wickström and R. Fässler, Genetic and cell biological analysis of integrin outside-in signaling, Genes Dev., 23 (2009), 397-418. doi: 10.1101/gad.1758709.

[24]

B. Lin, W. R. Holmes, C. J. Wang, T. Ueno, A. Harwell, L. Edelstein-Keshet, T. Inoue and A. Levchenko, Synthetic spatially graded Rac activation drives cell polarization and movement, PNAS, 109 (2012), E3668-E3677. doi: 10.1073/pnas.1210295109.

[25]

T. Lorenz and C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Math. Models Methods Appl. Sci., 24 (2014), 2383-2436. doi: 10.1142/S0218202514500249.

[26]

G. Meral and C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408 (2013), 597-614. doi: 10.1016/j.jmaa.2013.06.017.

[27]

R. E. Mickens, Nonstandard finite difference schemes, in Applications of Nonstandard Finite Difference Schemes (ed. R. E. Mickens), World Sci. Publ., 2000, 1-54. doi: 10.1142/9789812813251_0001.

[28]

H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[29]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250. doi: 10.1137/S0036139900382772.

[30]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal, Int. J. Biomath. Biostat., 1 (2010), 109-128.

[31]

C. Surulescu and N. Surulescu, Modeling and simulation of some cell dispersion problems by a nonparametric method, Math. Biosci. Eng., 8 (2011), 263-277. doi: 10.3934/mbe.2011.8.263.

[32]

C. Surulescu and N. Surulescu, Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, in Nonautonomous Dynamical Systems in the Life Sciences (eds. P. E. Kloeden and C. Pötzsche), Lecture Notes in Mathematics, 2102, Biomathematics Subseries, Springer, 2013, 269-307. doi: 10.1007/978-3-319-03080-7_9.

[33]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland, Amsterdam, 1977.

[34]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167. doi: 10.1137/070711505.

[1]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[2]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[3]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[4]

Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021258

[5]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[6]

Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2403-2424. doi: 10.3934/dcdss.2020120

[7]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[8]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[9]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems and Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[10]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[11]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[12]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[13]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[14]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[15]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[16]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[17]

Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108

[18]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[19]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[20]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (17)

[Back to Top]