Advanced Search
Article Contents
Article Contents

On a multiscale model involving cell contractivity and its effects on tumor invasion

Abstract Related Papers Cited by
  • Cancer cell migration is an essential feature in the process of tumor spread and establishing of metastasis. It characterizes the invasion observed on the level of the cell population, but it is also tightly connected to the events taking place on the subcellular level. These are conditioning the motile and proliferative behavior of the cells, but are also influenced by it. In this work we propose a multiscale model linking these two levels and aiming to assess their interdependence. On the subcellular, microscopic scale it accounts for integrin binding to soluble and insoluble components present in the peritumoral environment, which is seen as the onset of biochemical events leading to changes in the cell's ability to contract and modify its shape. On the macroscale of the cell population this leads to modifications in the diffusion and haptotaxis performed by the tumor cells and implicitly to changes in the tumor environment. We prove the (local) well posedness of our model and perform numerical simulations in order to illustrate the model predictions.
    Mathematics Subject Classification: Primary: 35Q92, 92C17; Secondary: 35K57.


    \begin{equation} \\ \end{equation}
  • [1]

    J. C. Adams, Regulation of protrusive and contractile cell-matrix contacts, J. Cell Sci., 115 (2002), 257-265.


    A. R. A. Anderson, M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thompson, Mathematical modeling of tumor invasion and metastasis, J. Theoretical Medicine, 2 (2000), 129-154.


    H. T. Banks and C. J. Musante, Well-posedness for a class of abstract nonlinear parabolic systems with time delay, Nonlinear Anal., 35 (1999), 629-648.doi: 10.1016/S0362-546X(98)00053-4.


    R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1963.


    N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp.doi: 10.1142/S0218202512005885.


    H. Berry, Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion, Biophys. J., 77 (1999), 655-665.doi: 10.1016/S0006-3495(99)76921-3.


    S. B. Carter, Haptotaxis and the mechanism of cell motility, Nature, 213 (1967), 256-260.doi: 10.1038/213256a0.


    F. A. C. C. Chalub, P. A. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.doi: 10.1007/s00605-004-0234-7.


    M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399-439.doi: 10.3934/nhm.2006.1.399.


    H. J. Eberl and L. Demaret, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, Electron. J. Differential Equations, Conference, 15 (2007), 77-96.


    A. Eladdadi and D. Isaacson, A mathematical model for the effects of HER2 overexpression on cell proliferation in breast cancer, Bull. Math. Biol., 70 (2008), 1707-1729.


    C. Engwer, T. Hillen, M. Knappitsch and C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, J. Math. Biol., (2014).doi: 10.1007/s00285-014-0822-7.


    A. van der Flier and A. Sonnenberg, Function and interactions of integrins, Cell Tissue Res., 305 (2001), 285-298.


    P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms, Nature Rev. Cancer, 3 (2003), 362-374.doi: 10.1038/nrc1075.


    P. Friedl and K. Wolf, Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp., 70 (2003), 277-285.


    R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753.


    T. Hillen, $M^5$ mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006), 585-616.doi: 10.1007/s00285-006-0017-y.


    J. D. Hood and D. A. Cheresh, Role of integrins in cell invasion and migration, Nature Rev. Cancer, 2 (2002), 91-100.doi: 10.1038/nrc727.


    A. Huttenlocher and A. R. Horwitz, Integrins in cell migration, Cold Spring Harb. Perspect. Biol., 3 (2011), a005074.doi: 10.1101/cshperspect.a005074.


    J. Kelkel and C. Surulescu, On some models for cancer cell migration through tissue networks, Math. Biosci. Eng., 8 (2011), 575-589.doi: 10.3934/mbe.2011.8.575.


    J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, Math. Models Methods Appl. Sci., 22 (2012), 1150017, 25 pp.doi: 10.1142/S0218202511500175.


    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23, Amer. Math. Soc., Providence, 1968.


    K. R. Legate, S. A. Wickström and R. Fässler, Genetic and cell biological analysis of integrin outside-in signaling, Genes Dev., 23 (2009), 397-418.doi: 10.1101/gad.1758709.


    B. Lin, W. R. Holmes, C. J. Wang, T. Ueno, A. Harwell, L. Edelstein-Keshet, T. Inoue and A. Levchenko, Synthetic spatially graded Rac activation drives cell polarization and movement, PNAS, 109 (2012), E3668-E3677.doi: 10.1073/pnas.1210295109.


    T. Lorenz and C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Math. Models Methods Appl. Sci., 24 (2014), 2383-2436.doi: 10.1142/S0218202514500249.


    G. Meral and C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408 (2013), 597-614.doi: 10.1016/j.jmaa.2013.06.017.


    R. E. Mickens, Nonstandard finite difference schemes, in Applications of Nonstandard Finite Difference Schemes (ed. R. E. Mickens), World Sci. Publ., 2000, 1-54.doi: 10.1142/9789812813251_0001.


    H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392.


    H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.doi: 10.1137/S0036139900382772.


    C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal, Int. J. Biomath. Biostat., 1 (2010), 109-128.


    C. Surulescu and N. Surulescu, Modeling and simulation of some cell dispersion problems by a nonparametric method, Math. Biosci. Eng., 8 (2011), 263-277.doi: 10.3934/mbe.2011.8.263.


    C. Surulescu and N. Surulescu, Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, in Nonautonomous Dynamical Systems in the Life Sciences (eds. P. E. Kloeden and C. Pötzsche), Lecture Notes in Mathematics, 2102, Biomathematics Subseries, Springer, 2013, 269-307.doi: 10.1007/978-3-319-03080-7_9.


    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland, Amsterdam, 1977.


    C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM J. Appl. Math., 70 (2009), 133-167.doi: 10.1137/070711505.

  • 加载中

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint