September  2015, 20(7): 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

Long-time behavior of solutions of a BBM equation with generalized damping

1. 

LAMFA, UMR 6140, Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80039 Amiens

2. 

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France, France

Received  February 2014 Revised  May 2015 Published  July 2015

We study the long-time behavior of the solution of a damped BBM equation $u_t + u_x - u_{xxt} + uu_x + \mathscr{L}_{\gamma}(u) = 0$. The proposed dampings $\mathscr{L}_{\gamma}$ generalize standards ones, as parabolic ($\mathscr{L}_{\gamma}(u)=-\Delta u$) or weak damping ($\mathscr{L}_{\gamma}(u)=\gamma u$) and allows us to consider a greater range. After establish the local well-posedness in the energy space, we investigate some numerical properties.
Citation: Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897
References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems, Commun. Pure Appl. Anal., 7 (2008), 211-227.

[2]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49. doi: 10.1016/0022-0396(89)90176-9.

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[4]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278. doi: 10.1016/j.physd.2004.01.023.

[5]

J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, Commun. Pure Appl. Anal., 12 (2013), 519-546. doi: 10.3934/cpaa.2013.12.519.

[6]

J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487-1506. doi: 10.3934/dcdss.2013.6.1487.

[7]

A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261. doi: 10.1093/imanum/20.2.235.

[8]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Equations, 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1.

[9]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations, 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[10]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644.

[11]

O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163.

[12]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation, Ann. Henri Poincaré, 8 (2007), 485-511. doi: 10.1007/s00023-006-0314-4.

[13]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves, Phil. Maj., 39 (1895), 422-443.

[14]

E. Ott and R. N. Sudan, Damping of solitary waves, The Physics of fluids, 13 (1970), p1432. doi: 10.1063/1.1693097.

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Applied Mathematical Sciences, 68, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[16]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138. doi: 10.1619/fesi.54.119.

[17]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186.

[18]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett., 10 (1997), 23-28. doi: 10.1016/S0893-9659(97)00005-0.

show all references

References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems, Commun. Pure Appl. Anal., 7 (2008), 211-227.

[2]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49. doi: 10.1016/0022-0396(89)90176-9.

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.

[4]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278. doi: 10.1016/j.physd.2004.01.023.

[5]

J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, Commun. Pure Appl. Anal., 12 (2013), 519-546. doi: 10.3934/cpaa.2013.12.519.

[6]

J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487-1506. doi: 10.3934/dcdss.2013.6.1487.

[7]

A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261. doi: 10.1093/imanum/20.2.235.

[8]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Equations, 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1.

[9]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations, 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[10]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644.

[11]

O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163.

[12]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation, Ann. Henri Poincaré, 8 (2007), 485-511. doi: 10.1007/s00023-006-0314-4.

[13]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves, Phil. Maj., 39 (1895), 422-443.

[14]

E. Ott and R. N. Sudan, Damping of solitary waves, The Physics of fluids, 13 (1970), p1432. doi: 10.1063/1.1693097.

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Applied Mathematical Sciences, 68, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[16]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138. doi: 10.1619/fesi.54.119.

[17]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186.

[18]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett., 10 (1997), 23-28. doi: 10.1016/S0893-9659(97)00005-0.

[1]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[2]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[3]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[4]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[5]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[6]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[7]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[8]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[9]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[10]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[11]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[12]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[13]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[14]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[15]

Xianbo Sun, Pei Yu. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 965-987. doi: 10.3934/dcdsb.2018341

[16]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[17]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[18]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[19]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[20]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (2)

[Back to Top]