Advanced Search
Article Contents
Article Contents

Quasi-effective stability for a nearly integrable volume-preserving mapping

Abstract Related Papers Cited by
  • This paper is concerned with the stability of the orbits for a nearly integrable volume-preserving mapping. We prove that the nearly integrable volume-preserving mapping possesses quasi-effective stability under the classical KAM-type nondegeneracy, that is, there is an open subset of the phase space whose measure is nearly full, such that the considered mapping is effective stable on this subset. This announces a connection between the Nekhoroshev theory and KAM theory.
    Mathematics Subject Classification: Primary: 37J40, 37E40, 37F50; Secondary: 65L20.


    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnol'd, Proof of a theorem by A. N. Komolgorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv., 18 (1963), 13-40.


    V. Arnol'd, Sur une propriététopologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris, 261 (1965), 3719-3722.


    J. E. Cartwright, M. Feingold and O. Piro, Passive scalar and three-dimensional liouvillian mappings, Phys. D, 76 (1994), 22-23.doi: 10.1016/0167-2789(94)90247-X.


    C. Cheng and Y. Sun, Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech. Dynam. Astronom., 47 (1990), 275-292.doi: 10.1007/BF00053456.


    F. Cong, The approximate decomposition of exponential order of slow-fast motions in multifrequency systems, J. Differential Equations, 196 (2004), 466-480.doi: 10.1016/j.jde.2003.09.003.


    F. Cong, J. Hong and Y. Han, Near-invariant tori on exponentially long time for Poisson systems, J. Math. Anal. Appl., 334 (2007), 59-68.


    F. Cong, Y. Li and M. Huang, Invariant tori for nearly twist mappings with intersection property, Northest. Math. J., 12 (1996), 280-298.


    M. Feingold, L. P. Kadanoff and O. Piro, Passive Scalars, three-dimensional volume preserving maps, and Chaos, J. Stat. Phys., 50 (1988), 529-565.doi: 10.1007/BF01026490.


    M. Feingold, L. P. Kadanoff and O. Piro, Transport of passive scalars: KAM surface and diffusion in three-dimensional Liouvillian maps, in Instabilities and nonequilbrium structures II (eds. E. Tirapegui and D. Villarroel), Kluwer Academic Publishers Group, 50 (1989), 37-51.


    M. Guzzo, A direct proof of the Nekhoroshev theorem for nearly integrable symplectic mappings, Ann. Henri Poincaré, 5 (2004), 1013-1039.doi: 10.1007/s00023-004-0188-2.


    E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, Springer, 2002.doi: 10.1007/978-3-662-05018-7.


    Y. Han and F. Cong, Effective stablity for nearly integrable mappings with intersection property, Ann. Diff. Eqs., 21 (2005), 294-299.


    I. Mezić, Break-up of invariant surfaces in action-angle-angle mappings and flows, Phys. D, 154 (2001), 51-67.doi: 10.1016/S0167-2789(01)00226-3.


    N. N. Nekhoroshev, Exponential estimate of the stability time of nearly integerable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 1-65.


    O. Piro and M. Feingold, Diffusion in three-dimensional liouvillian maps, Phys. Rev. Lett., 61 (1988), 1799-1802.doi: 10.1103/PhysRevLett.61.1799.


    M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century, Mosc. Math. J., 3 (2003), 1113-1144, 1201-1202.


    Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theory Dynamical Systems, 12 (1992), 621-631.doi: 10.1017/S0143385700006969.


    J. Xu, J. You and Q. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 226 (1997), 375-387.doi: 10.1007/PL00004344.

  • 加载中

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint