-
Previous Article
Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion
- DCDS-B Home
- This Issue
-
Next Article
Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder
Competition for one nutrient with recycling and allelopathy in an unstirred chemostat
1. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China |
2. | Department of Natural Science in the Center for General Education, Chang Gung University, Kwei-Shan, Taoyuan 333 |
References:
[1] |
F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Addison-Wesley Longman, Harlow, UK, 1997. |
[2] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[4] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[5] |
E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion, Part I, General existence results, Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[6] |
Y. Du, Positive periodic solutions of a competitor-competitor-mutualist model, Differential Integral Equations, 9 (1996), 1043-1066. |
[7] |
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
doi: 10.1007/978-1-4615-6397-6. |
[8] |
J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: A theoretical exploration, Journal of Plankton Research, 33 (2011), 211-227.
doi: 10.1093/plankt/fbq070. |
[9] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[10] |
S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030. |
[11] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051. |
[12] |
I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy, Applied Mathematics and Computation, 215 (2009), 573-582.
doi: 10.1016/j.amc.2009.05.033. |
[13] |
I. P. Martines, H. V. Kojouharov and J. P. Grover, Nutrient recycling and allelopathy in a gradostat, Computers and Mathematics with Applications, 66 (2013), 1613-1626.
doi: 10.1016/j.camwa.2013.02.005. |
[14] |
R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[15] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[16] |
A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[18] |
H. H. Schaefer and M. P. Wolff, Topological Vector Spaces, $2^{nd}$ edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1468-7. |
[19] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995. |
[20] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[21] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[22] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[23] |
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[24] |
M. X. Wang, Nonlinear Parabolic Equations (in Chinese), Science Press, Beijing, 1993. |
[25] |
J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.
doi: 10.1016/S0362-546X(98)00250-8. |
[26] |
Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21 (1990), 327-345.
doi: 10.1137/0521018. |
[27] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
doi: 10.1007/978-0-387-21761-1. |
show all references
References:
[1] |
F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Addison-Wesley Longman, Harlow, UK, 1997. |
[2] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[4] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[5] |
E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion, Part I, General existence results, Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[6] |
Y. Du, Positive periodic solutions of a competitor-competitor-mutualist model, Differential Integral Equations, 9 (1996), 1043-1066. |
[7] |
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
doi: 10.1007/978-1-4615-6397-6. |
[8] |
J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: A theoretical exploration, Journal of Plankton Research, 33 (2011), 211-227.
doi: 10.1093/plankt/fbq070. |
[9] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[10] |
S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030. |
[11] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051. |
[12] |
I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy, Applied Mathematics and Computation, 215 (2009), 573-582.
doi: 10.1016/j.amc.2009.05.033. |
[13] |
I. P. Martines, H. V. Kojouharov and J. P. Grover, Nutrient recycling and allelopathy in a gradostat, Computers and Mathematics with Applications, 66 (2013), 1613-1626.
doi: 10.1016/j.camwa.2013.02.005. |
[14] |
R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[15] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[16] |
A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[18] |
H. H. Schaefer and M. P. Wolff, Topological Vector Spaces, $2^{nd}$ edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1468-7. |
[19] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995. |
[20] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[21] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[22] |
J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[23] |
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[24] |
M. X. Wang, Nonlinear Parabolic Equations (in Chinese), Science Press, Beijing, 1993. |
[25] |
J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.
doi: 10.1016/S0362-546X(98)00250-8. |
[26] |
Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21 (1990), 327-345.
doi: 10.1137/0521018. |
[27] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
doi: 10.1007/978-0-387-21761-1. |
[1] |
Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663 |
[2] |
Feng-Bin Wang, Sze-Bi Hsu, Wendi Wang. Dynamics of harmful algae with seasonal temperature variations in the cove-main lake. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 313-335. doi: 10.3934/dcdsb.2016.21.313 |
[3] |
Mohamed Dellal, Bachir Bar, Mustapha Lakrib. A competition model in the chemostat with allelopathy and substrate inhibition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2025-2050. doi: 10.3934/dcdsb.2021120 |
[4] |
Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621 |
[5] |
Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069 |
[6] |
Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169 |
[7] |
Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128 |
[8] |
Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066 |
[9] |
Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279 |
[10] |
Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185 |
[11] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359 |
[12] |
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35 |
[13] |
Yu-Xia Wang, Wan-Tong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 19-39. doi: 10.3934/dcds.2019002 |
[14] |
Yuan-Hang Su, Wan-Tong Li, Fei-Ying Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4929-4936. doi: 10.3934/dcdsb.2019038 |
[15] |
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124 |
[16] |
Brittni Hall, Xiaoying Han, Peter E. Kloeden, Hans-Werner van Wyk. A nonautonomous chemostat model for the growth of gut microbiome with varying nutrient. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022075 |
[17] |
Ihab Haidar, Alain Rapaport, Frédéric Gérard. Effects of spatial structure and diffusion on the performances of the chemostat. Mathematical Biosciences & Engineering, 2011, 8 (4) : 953-971. doi: 10.3934/mbe.2011.8.953 |
[18] |
Hua Nie, Jianhua Wu. The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 303-329. doi: 10.3934/dcds.2012.32.303 |
[19] |
Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1 |
[20] |
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]